Dynamic Selection of Learning Situations in Virtual Environment
Kevin Carpentier, Domitile Lourdeaux, Indira Mouttapa-Thouvenin
2013
Abstract
In a lot of industrial contexts, workers may encounter novel situations which have never occured in their training. Yet, such situations must be handeld successfully to prevent high-cost consequences. Such consequences might be human casualties (in high-risk domains), material damages (in manufacturing domains) or productivity loss (in high performance industry). To address this lack in their training, virtual environments for training should provide a large spectrum of learning situations. The difficulty lies in generating these situations dynamically according to the learners profile while they have a total freedom of interaction in the virtual environment. To address this issue, we propose to generate activities by operationnalising the Zone of Proximal Development in a multidimensional space. The filling of this space will be updated dynamically based on user interactions.
References
- Amokrane, K. and Lourdeaux, D. Pedagogical system in virtual environment for high-risk sites. In Proceedings of ICAART 2010.
- Amokrane, K. and Lourdeaux, D. (2009). Virtual reality contribution to training and risk prevention. In Proceedings of ICAI 2009.
- Barot, C., Burkhardt, J.-M., Lourdeaux, D., and Lenne, D. V3S, a virtual environment for risk management training. In Proceedings of JVRC11.
- Barot, C., Lourdeaux, D., and Lenne, D. (2013). Dynamic scenario adaptation balancing control, coherence and emergence. In Proceedings of ICAART 2013.
- Brusilovsky, P. and Millán, E. (2007). User models for adaptive hypermedia and adaptive educational systems. Lecture Notes in Computer Science.
- Campbell, J. (2008). The Hero With a Thousand Faces. New World Library.
- Csikszentmihalyi, M. (1991). Flow: The Psychology of Optimal Experience. Harper Perennial.
- Gerbaud, S., Mollet, N., Ganier, F., Arnaldi, B., and Tisseau, J. (2008). GVT: a platform to create virtual environments for procedural training. In IEEE Virtual Reality.
- Greimas, A. J. (1966). Sémantique structurale : recherche et méthode. Larousse edition.
- Marion, N. (2010). Modélisation de scénarios pédagogiques pour les environnements de réalité virtuelle d'apprentissage humain. PhD thesis, Université de Bretagne Occidentale.
- Niehaus, J. M., Li, B., and Riedl, M. O. (2011). Automated scenario adaptation in support of intelligent tutoring systems. In Proceedings of the 24th FLAIRS.
- Propp, V. I. (1968). Morphology of the Folktale. University of Texas Press.
- Shawver, D. (1997). Virtual actors and avatars in a flexible user-determined-scenario environment. In Virtual Reality Annual International Symposium, 1997.
- Smets, P. and Kennes, R. (1994). The transferable belief model. Artificial Intelligence, 66(2):191 - 234.
- Vygotsky, L. S. (1978). Mind in Society. Harvard University Press, Cambridge, MA.
Paper Citation
in Harvard Style
Carpentier K., Lourdeaux D. and Mouttapa-Thouvenin I. (2013). Dynamic Selection of Learning Situations in Virtual Environment . In Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-8565-39-6, pages 101-110. DOI: 10.5220/0004247901010110
in Bibtex Style
@conference{icaart13,
author={Kevin Carpentier and Domitile Lourdeaux and Indira Mouttapa-Thouvenin},
title={Dynamic Selection of Learning Situations in Virtual Environment},
booktitle={Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2013},
pages={101-110},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004247901010110},
isbn={978-989-8565-39-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Dynamic Selection of Learning Situations in Virtual Environment
SN - 978-989-8565-39-6
AU - Carpentier K.
AU - Lourdeaux D.
AU - Mouttapa-Thouvenin I.
PY - 2013
SP - 101
EP - 110
DO - 10.5220/0004247901010110