tribution. Proc. 20th Intern. Conf. on Pattern Recog-
nition, pages 3121–3124.
Clark, M. and Smith, D. (1999). Psychological correlates of
outcome following rehabilitation from stroke. Clinical
Rehabilitation, 13(2):129–140.
Folgheraiter, M., Jordan, M., Straube, S., Seeland, A., Kim,
S. K., and Kirchner, E. A. (2012). Measuring the Im-
provement of the Interaction Comfort of a Wearable
Exoskeleton. Intern. J. of Social Robotics, 4(3):285–
302.
Folgheraiter, M., Kirchner, E. A., Seeland, A., Kim, S. K.,
Jordan, M., W
¨
ohrle, H., Bongardt, B., Schmidt, S.,
Albiez, J., and Kirchner, F. (2011). A multimodal
brain-arm interface for operation of complex robotic
systems and upper limb motor recovery. In Proc.
4th Int. Conf. Biomed. Electronics and Devices, pages
150–162, Rome.
Gancet, J., Ilzkovitz, M., Cheron, G., Ivanenko, Y.,
van der Kooij, H., van der Helm, F., Zanow, F., and
Thorsteinsson, F. (2011). MINDWALKER: A Brain
Controlled Lower Limbs Exoskeleton for Rehabilita-
tion. Potential Applications To Space. In 11th Symp.
on Adv. Space Techn. in Robotics and Automation,
pages 12–14.
Guidali, M., Duschau-Wicke, A., Broggi, S., Klamroth-
Marganska, V., Nef, T., and Riener, R. (2011). A
robotic system to train activities of daily living in a
virtual environment. Med. and Biol. Engineering and
Computing, 49(10):1213–1223.
Hesse, S., Werner, C., and Brocke, J. (2009). Maschinen-
und Robotereinsatz in der Neurorehabilitation. Or-
thop
¨
adie-Technik, 2:74–77.
Hogan, N., Krebs, H., Charnnarong, J., Srikrishna, P., and
Sharon, A. (1992). MIT-MANUS: a workstation for
manual therapy and training I. In Proc. Intern. Works.
on Robot and Human Comm., pages 161–165.
Jordan, M., Benitez, L. M. V., Schmidt, S., Folgheraiter,
M., and Albiez, J. (2012). Model-Based Control and
Design of a Low-Pressure Fluid Actuation System for
Haptic Devices. In Proc. 13th Intern. Conf. on New
Actuators (Actuator-12), pages 295–298, Bremen.
Kelly, R. (1997). PD Control with Desired Gravity Com-
pensation of Robotic Manipulators: A Review. The
Intern. J. of Robotics Research, 16(5):660–672.
Kornhuber, H. H. and Deecke, L. (1965). Hirnpoten-
tial
¨
anderungen bei Willk
¨
urbewegungen und passiven
Bewegungen des Menschen: Bereitschaftspotential
und reafferente Potentiale. Pfl
¨
uger’s Archiv f
¨
ur die
ges. Phys. des Menschen und der Tiere, 284(1):1–17.
Leeb, R., Keinrath, C., Friedman, D., Guger, C., Scherer,
R., Neuper, C., Garau, M., Antley, A., Steed, A., and
Slater, M. (2006). Walking by thinking: the brain-
waves are crucial, not the muscles! Presence: Teleop-
erators and Virtual Environments, 15(5):500–514.
Lenzi, T., De Rossi, S., Vitiello, N., and Carrozza, M.
(2012). Intention-based EMG Control for Powered
Exoskeletons. IEEE Transa. on Biomed. Engineering,
59(8):2180–2190.
Meyer-B
¨
ase, U. (2007). Digital Signal Processing with
Field Programmable Gate Arrays. Springer-Verlag,
Berlin, Heidelberg, 3rd edition.
Mihelj, M., Nef, T., and Riener, R. (2007). ARMin II -
7 DoF rehabilitation robot: mechanics and kinemat-
ics. In 2007 Intern. Conf. on Robotics and Automa-
tion, pages 4120–4125.
Nocedal, J. and Wright, S. (1999). Numerical Optimization.
Springer Series in Operations Research. Springer-
Verlag, New York.
Otsuka, T., Kawaguchi, K., Kawamoto, H., and Sankai, Y.
(2011). Development of Upper-limb type HAL and
Reaching Movement for Meal-Assistance. In Proc.
2011 IEEE Intern. Conf. on Robotics and Biomimetics
(ROBIO-11), pages 883–888.
Platz, T. and Roschka, S. (2009). Rehabilitative Therapie
bei Armparese nach Schlaganfall. Neurol. Rehabil.,
15(2):81–106.
Santucci, E. and Balconi, M. (2009). The multicompo-
nential nature of movement-related cortical potentials:
functional generators and psychological factors. Neu-
ropsychological Trends, (5):59–84.
Shyu, K.-K., Lee, P.-L., Lee, M.-H., Lin, M.-H., Lai, R.-J.,
and Chiu, Y.-J. (2010). Development of a Low-Cost
FPGA-Based SSVEP BCI Multimedia Control Sys-
tem. IEEE Transa. on Biomed. Circuits and Systems,
4(2):125–132.
Tabie, M. and Kirchner, E. A. (2013). EMG Onset
Detection—Comparison of different methods for a
movement prediction task based on EMG. In BIOSIG-
NALS. SciTePress. Accepted.
Takahashi, C. D., Der-Yeghiaian, L., Le, V., Motiwala,
R. R., and Cramer, S. C. (2008). Robot-based hand
motor therapy after stroke. Brain, 131(2):425–437.
Villiger, M., Hepp-Reymond, M.-C., Pyk, P., Kiper, D.,
Eng, K., Spillman, J., Meilick, B., Estevez, N., Kol-
lias, S. S., Curt, A., and Hotz-Boendermaker, S.
(2011). Virtual reality rehabilitation system for neu-
ropathic pain and motor dysfunction in spinal cord in-
jury patients. In 2011 Intern. Conf. on Virt. Rehab.
(ICVR), pages 1–4.
Volpe, B., Krebs, H., Hogan, N., Edelstein, O., Diels, C.,
and Aisen, M. (2000). A novel approach to stroke
rehabilitation: robot-aided sensorimotor stimulation.
Neurology, 54(10):1938–1944.
Zander, T. O., Gaertner, M., Kothe, C., and Vilimek, R.
(2010). Combining eye gaze input with a brain–
computer interface for touchless human–computer in-
teraction. Intern. J. of Human-Computer Interaction,
27(1):38–51.
TowardsAssistiveRoboticsforHomeRehabilitation
177