Modeling H2 Adsorption Processes at SnO2 Nanowire Surfaces - Parameter Estimation and Simulation

G. Tulzer, S. Baumgartner, E. Brunet, G. C. Mutinati, S. Steinhauer, A. Köck, C. Heitzinger

2013

Abstract

Metal-oxide gas sensors are advantageous for various purposes due to their physical and chemical as well as electrical properties. However, a lack of selectivity remains the central issue in this field. A quantitative understanding of the processes at the semiconductor surface is crucial to overcome these difficulties. In this work, we determine numerical values for the parameters governing the interaction of H2 with the device to obtain quantitative information regarding the influence of the atmosphere on the sensor. With the computed values, simulations regarding the surface charge can be performed to understand the sensor behavior under different ambient conditions.

References

  1. Barsan, N. and Weimar, U. (2001). Conduction model of metal oxide gas sensors. Journal of Electroceramics, 7:143-167.
  2. Baumgartner, S. and Heitzinger, C. (2012). Existence and local uniqueness for 3d self-consistent multiscale models for field-effect sensors. Commun. Math. Sci., 10(2):693-716.
  3. Baumgartner, S., Vasicek, M., Bulyha, A., and Heitzinger, C. (2011). Optimization of nanowire DNA sensor sensitivity using self-consistent simulation. Nanotechnology, 22(42):425503/1-8.
  4. Baumgartner, S., Vasicek, M., and Heitzinger, C. (2012). Modeling and simulation of nanowire based fieldeffect biosensors. In Korotcenkov, G., editor, Chemical Sensors: Simulation and Modeling, pages 447- 469. Momentum Press.
  5. Brunet, E., Maier, T., Mutinati, G., Steinhauer, S., Köck, A., Gspan, C., and Grogger, W. (2012). Comparison of the gas sensing performance of SnO2 thin film and SnO2 nanowire sensors. Sensors and Actuators B: Chemical, 165(1):110-118.
  6. Comini, E. (2006). Metal oxide nano-crystals for gas sensing. Analytica Chimica Acta, 568(12):28 - 40.
  7. Ding, J., McAvoy, T., Cavicchi, R., and Semancik, S. (2001). Surface state trapping models forSnO2-based microhotplate sensors. Sensors and Actuators B: Chemical, 77(3):597-613.
  8. Fort, A., Mugnaini, M., Rocchi, S., Serrano-Santos, M., Vignoli, V., and Spinicci, R. (2007). Simplified models for sno2 sensors during chemical and thermal transients in mixtures of inert, oxidizing and reducing gases. Sensors and Actuators B: Chemical, 124(1):245-259.
  9. Fort, A., Mugnaini, M., Rocchi, S., Vignoli, V., Comini, E., Faglia, G., and Ponzoni, A. (2010). Metal-oxide nanowire sensors for CO detection: Characterization and modeling. Sensors and Actuators B: Chemical, 148(1):283-291.
  10. Hahn, S., Baˆrsan, N., Weimar, U., Ejakov, S., Visser, J., and Soltis, R. (2003). CO sensing with SnO2 thick film sensors: role of oxygen and water vapour. Thin Solid Films, 436(1):17-24.
  11. Higham, D. (2008). Modeling and simulating chemical reactions. SIAM Review, Education Section, 50(2):347- 368.
  12. Malyshev, V. and Pislyakov, A. (2008). Investigation of gas-sensitivity of sensor structures to hydrogen in a wide range of temperature, concentration and humidity of gas medium. Sensors and Actuators B: Chemical, 134(2):913-921.
  13. Rehrl, M. (2011). Differential Equation Models for Surface Reactions of SnO2 Nanowire Gas Sensors and their Inverse Modeling. PhD thesis, Diploma Thesis, University of Vienna.
  14. Tulzer, G., Baumgartner, S., Brunet, E., Mutinati, G. C., Steinhauer, S., Köck, A., and Heitzinger, C. (2012). Inverse modeling of CO reactions at SnO2 nanowire surfaces for selective detection. Procedia Engineering, 47:809-812.
Download


Paper Citation


in Harvard Style

Tulzer G., Baumgartner S., Brunet E., C. Mutinati G., Steinhauer S., Köck A. and Heitzinger C. (2013). Modeling H2 Adsorption Processes at SnO2 Nanowire Surfaces - Parameter Estimation and Simulation . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013) ISBN 978-989-8565-34-1, pages 265-268. DOI: 10.5220/0004249402650268


in Bibtex Style

@conference{biodevices13,
author={G. Tulzer and S. Baumgartner and E. Brunet and G. C. Mutinati and S. Steinhauer and A. Köck and C. Heitzinger},
title={Modeling H2 Adsorption Processes at SnO2 Nanowire Surfaces - Parameter Estimation and Simulation},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)},
year={2013},
pages={265-268},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004249402650268},
isbn={978-989-8565-34-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)
TI - Modeling H2 Adsorption Processes at SnO2 Nanowire Surfaces - Parameter Estimation and Simulation
SN - 978-989-8565-34-1
AU - Tulzer G.
AU - Baumgartner S.
AU - Brunet E.
AU - C. Mutinati G.
AU - Steinhauer S.
AU - Köck A.
AU - Heitzinger C.
PY - 2013
SP - 265
EP - 268
DO - 10.5220/0004249402650268