level of some genes in the similar pattern of S. aureus.
It is notable that the most important gene, RANKL,
is down regulated in the both S. aureus and HIV in-
fections. So we developed models for the bone re-
modeling including the effect of S. aureus caused os-
teomyelitis and HIV progression incorporating the ef-
fect of the RANKL that helps to gain better insight
of the complexity of the disease progression. Ac-
cording to our model, HAART therapy can substan-
tially decrease viral load and significantly increase
CD4+ T cells, but it cannot eradicated virus com-
pletely even after implementing the therapy for a long
time. From a methodological point of view this mod-
elling approach has led to the proposal of considering
additional estimators of the bone pathologies as diag-
nostic tool. That could also inspire the ideal situa-
tion in which a personalised model is generated from
(personalised) data and the comparison between clin-
ical data obtained during periodic medical check-up
is compared with the computer predictions. There-
fore our work is meaningful in perspective of a clin-
ical bioinformatics characterized by a close coupling
between clinical measures and modeling prediction.
REFERENCES
Ardura, M., Banchereau, R., Mejias, A., Di Pucchio, T.,
Glaser, C., Allantaz, F., Pascual, V., Banchereau, J.,
Chaussabel, D., and Ramilo, O. (2009). Enhanced
monocyte response and decreased central memory t
cells in children with invasive staphylococcus aureus
infections. PLoS One, 4(5):e5446.
Claro, T., Widaa, A., O’Seaghdha, M., Miajlovic, H., Fos-
ter, T., O’Brien, F., and Kerrigan, S. (2011). Staphylo-
coccus aureus protein a binds to osteoblasts and trig-
gers signals that weaken bone in osteomyelitis. PloS
one, 6(4):e18748.
Cummins, N., Klicpera, A., Sainski, A., Bren, G., Khosla,
S., Westendorf, J., and Badley, A. (2011). Human im-
munodeficiency virus envelope protein gp120 induces
proliferation but not apoptosis in osteoblasts at physi-
ologic concentrations. PloS one, 6(9):e24876.
Gentleman, R., Carey, V., Bates, D., Bolstad, B., Dettling,
M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry,
J., et al. (2004). Bioconductor: open software devel-
opment for computational biology and bioinformatics.
Genome biology, 5(10):R80.
Gibellini, D., De Crignis, E., Ponti, C., Cimatti, L., Borderi,
M., Tschon, M., Giardino, R., and Re, M. (2008). Hiv-
1 triggers apoptosis in primary osteoblasts and hobit
cells through tnfα activation. Journal of medical vi-
rology, 80(9):1507–1514.
Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P.,
Schmidt, E., de Bono, B., Jassal, B., Gopinath, G.,
Wu, G., Matthews, L., et al. (2005). Reactome: a
knowledgebase of biological pathways. Nucleic acids
research, 33(suppl 1):D428–D432.
Komarova, S., Smith, R., Dixon, S., Sims, S., and Wahl, L.
(2003). Mathematical model predicts a critical role for
osteoclast autocrine regulation in the control of bone
remodeling. Bone, 33(2):206–215.
Morabito, N. e. a. (2004). Osteoprotegerin and RANKL in
the Pathogenesis of Thalassemia-Induced Osteoporo-
sis: New Pieces of the Puzzle. Journal of Bone and
Mineral Research, 19(5):722–727.
Parfitt, A. (1994). Osteonal and hemi-osteonal remodeling:
The spatial and temporal framework for signal traffic
in adult human bone. Journal of cellular biochemistry,
55(3):273–286.
Raggatt, L. and Partridge, N. (2010). Cellular and molecular
mechanisms of bone remodeling. Journal of Biologi-
cal Chemistry, 285(33):25103.
Ramilo, O., Allman, W., Chung, W., Mejias, A., Ar-
dura, M., Glaser, C., Wittkowski, K., Piqueras, B.,
Banchereau, J., Palucka, A., et al. (2007). Gene
expression patterns in blood leukocytes discriminate
patients with acute infections. Blood, 109(5):2066–
2077.
Reem, A., Manisha, H., Gary, D., Riana, C., Sohrab, D.,
Nora, G., Natasha, I., Nicole, M., Linda, P., Amy, G.,
et al. (2011). Osteoimmunopathology in hiv/aids: A
translational evidence-based perspective. Pathology
research international, 2011.
Sguanci, L., Bagnoli, F., and Lio, P. (2007). Modeling hiv
quasispecies evolutionary dynamics. BMC Evolution-
ary Biology, 7(Suppl 2):S5.
Smoot, M., Ono, K., Ruscheinski, J., Wang, P., and Ideker,
T. (2011). Cytoscape 2.8: new features for data in-
tegration and network visualization. Bioinformatics,
27(3):431–432.
Soetaert, K., Petzoldt, T., et al. (2010). Inverse modelling,
sensitivity and monte carlo analysis in r using package
fme. Journal of Statistical Software, 33(3):1–28.
ComparingViral(HIV)andBacterial(Staphylococcusaureus)InfectionoftheBoneTissue
201