Branicky, M. S. (2005). Introduction to hybrid systems. In
Handbook of Networked and Embedded Control Sys-
tems, pages 91–116.
Cabasino, M. P., Giua, A., and Seatzu, C. (2010). Fault de-
tection for discrete event systems using petri nets with
unobservable transitions. Automatica, 46(9):1531–
1539.
Carrasco, R. C. and Oncina, J. (1994). Learning stochas-
tic regular grammars by means of a state merging
method. In GRAMMATICAL INFERENCE AND AP-
PLICATIONS, pages 139–152. Springer-Verlag.
Carrasco, R. C. and Oncina, J. (1999). Learning determinis-
tic regular grammars from stochastic samples in poly-
nomial time. In RAIRO (Theoretical Informatics and
Applications), volume 33, pages 1–20.
Cassandras, C. G. and Lafortune, S. (2008). Introduction to
Discrete Event Systems. 2.ed. Springer.
David, R. and Alla, H. (1987). Continuous petri nets. In
Proc. of the 8th European Workshop on Application
and Theory of Petri Nets, pages 275–294. Zaragoza,
Spain.
David, R. and Alla, H. (2001). On hybrid petri nets. Dis-
crete Event Dynamic Systems, 11(1-2):9–40.
Hastie, T., Tibshirani, R., and Friedman, J. (2008). The el-
ements of statistical learning: data mining, inference
and prediction. Springer, 2 edition.
Henzinger, T. A. (1996). The theory of hybrid automata.
In Proceedings of the 11th Annual IEEE Symposium
on Logic in Computer Science, LICS ’96, pages 278–
292, Washington, DC, USA. IEEE Computer Society.
Hoeffding, W. (1963). Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58(301):pp. 13–30.
Hofbaur, M. W. and Williams, B. C. (2002). Mode esti-
mation of probabilistic hybrid systems. In Intl. Conf.
on Hybrid Systems: Computation and Control, pages
253–266. Springer Verlag.
Kumar, B., Niggemann, O., and Jasperneite, J. (2010). Sta-
tistical models of network traffic. In International
Conference on Computer, Electrical and Systems Sci-
ence. Cape Town, South Africa.
Maier, A., Voden
ˇ
carevi
´
c, A., Niggemann, O., Just, R., and
J
¨
ager, M. (2011). Anomaly detection in production
plants using timed automata. In 8th International
Conference on Informatics in Control, Automation
and Robotics (ICINCO), pages 363–369. Noordwijk-
erhout, The Netherlands.
Narasimhan, S. and Biswas, G. (2007). Model-based diag-
nosis of hybrid systems. Systems, Man and Cybernet-
ics, Part A: Systems and Humans, IEEE Transactions
on, 37(3):348 –361.
Niggemann, O., Stein, B., Voden
ˇ
carevi
´
c, A., Maier, A., and
Kleine B
¨
uning, H. (2012). Learning behavior mod-
els for hybrid timed systems. In Twenty-Sixth Confer-
ence on Artificial Intelligence (AAAI-12), pages 1083–
1090, Toronto, Ontario, Canada.
Niggemann, O. and Stroop, J. (2008). Models for model’s
sake: why explicit system models are also an end
to themselves. In ICSE ’08: Proceedings of the
30th international conference on Software engineer-
ing, pages 561–570, New York, NY, USA. ACM.
Pethig, F., Kroll, B., Niggemann, O., Maier, A., Tack, T.,
and Maag, M. (2012). A generic synchronized data
acquisition solution for distributed automation sys-
tems. In Proc. of the 17th IEEE International Conf.
on Emerging Technologies and Factory Automation
ETFA’2012, Krakow, Poland (in press).
Reber, A. S. (1967). Implicit learning of artificial gram-
mars. Journal of Verbal Learning and Verbal Behav-
ior, 6(6):855 – 863.
Thollard, F., Dupont, P., and de la Higuera, C. (2000). Prob-
abilistic DFA inference using Kullback-Leibler diver-
gence and minimality. In Proc. of the 17th Interna-
tional Conf. on Machine Learning, pages 975–982.
Morgan Kaufmann.
Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F.,
and Carrasco, R. C. (2005). Probabilistic finite-state
machines-part ii. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 27:1026–1039.
Voden
ˇ
carevi
´
c, A., Kleine B
¨
uning, H., Niggemann, O., and
Maier, A. (2011). Identifying behavior models for
process plants. In Proc. of the 16th IEEE International
Conf. on Emerging Technologies and Factory Automa-
tion ETFA’2011, pages 937–944, Toulouse, France.
Wang, M. and Dearden, R. (2009). Detecting and Learning
Unknown Fault States in Hybrid Diagnosis. In Pro-
ceedings of the 20th International Workshop on Prin-
ciples of Diagnosis, DX09, pages 19–26, Stockholm,
Sweden.
Zhao, F., Koutsoukos, X. D., Haussecker, H. W., Reich, J.,
and Cheung, P. (2005). Monitoring and fault diagno-
sis of hybrid systems. IEEE Transactions on Systems,
Man, and Cybernetics, Part B, 35(6):1225–1240.
ICPRAM2013-InternationalConferenceonPatternRecognitionApplicationsandMethods
238