Figure 9: Interacting Group Discovery in Collective dataset. Different interacting groups are represented using different
color bounding boxes. The non-group people are represented using red color bounding boxes and are not included while
constructing to local group activity descriptors. This figure is best viewed in color.
REFERENCES
Amer, M. R. and Todorovic, S. (2011). A chains model for
localizing participants of group activities in videos. In
Proc. IEEE International Conference on Computer Vi-
sion.
Brendel, W. and Todorovic, S. (2011). Learning spatiotem-
poal graphs of human activities. In Proc. IEEE Inter-
national Conference on Computer Vision, Barcelona,
Spain.
Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for
support vector machines. ACM Transactions on Intel-
ligent Systems and Technology, pages 27:1–27:27.
Chang, M.-C., Krahnstoever, N., Lim, S., and Yu, T. (2010).
Group level activity recognition in crowded environ-
ments across multiple cameras. In Proc. IEEE Inter-
national Conference on Advanced Video and Signal
Based Surveillance, pages 56–63, DC, USA.
Choi, W., Shahid, K., and Savarese, S. (2009). What are
they doing? : collective activity classification using
spatio-temporal relationship among people. In Proc.
Visual Surveillance Workshop, ICCV, pages 1282 –
1289.
Choi, W., Shahid, K., and Savarese, S. (2011). Learning
context for collective activity recognition. In Proc.
Computer Vision and Pattern Recognition, pages 3273
–3280, Spring CO, USA.
Cristani, M., Bazzani, L., Paggetti, G., Fossati, A., Tosato,
D., Bue, A. D., Menegaz, G., and Murino, V. (2011).
Social interaction discovery by statistical analysis of
f-formations. In Proc. British Machine Vision Confer-
ence, pages 23.1–23.12.
Farenzena, M., Bazzani, L., Murino, V., and Cristani, M.
(2009a). Towards a subject-centered analysis for au-
tomated video surveillance. In Proc. International
Conference on Image Analysis and Processing, pages
481–489, Berlin, Heidelberg.
Farenzena, M., Tavano, A., Bazzani, L., Tosato, D., Pagetti,
G., Menegaz, G., Murino, V., and Cristani, M.
(2009b). Social interaction by visual focus of atten-
tion in a three-dimensional environment. In Proc.
Workshop on Pattern Recognition and Artificial Intel-
ligence for Human Behavior Analysis at AI*IA.
Gaur, U., Zhu, Y., Song, B., and Roy-Chowdhury, A.
(2011). A ”string of feature graphs” model for recog-
nition of complex activties in natural videos. In Proc.
IEEE International Conference on Computer Vision,
Barcelona, Spain.
Helbing, D. and Moln
´
ar, P. (1995). Social force model for
pedestrian dynamics. Physical Review E, 51(5):4282–
4286.
Lan, T., Wang, Y., Mori, G., and Robinovitch, S. (2010).
Retrieving actions in group contexts. In Proc. Inter-
national Workshop on Sign Gesture Activity.
Lan, T., Wang, Y., Yang, W., Robinovitch, S., and Mori,
G. (2011). Discriminative latent models for recogniz-
ing contextual group activities. IEEE Transactions on
Pattern Analysis and Machine Intelligence, (99):1.
Pavan, M. and Pelillo, M. (2007). Dominant sets and pair-
wise clustering. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, pages 167 –172.
Ryoo, M. and Aggarwal, J. (2011). Stochastic represen-
tation and recognition of high-level group activities.
International Journal of Computer Vision, pages 183–
200.
Smith, K., Ba, S., Odobez, J.-M., and Gatica-Perez, D.
(2008). Tracking the visual focus of attention for a
varying number of wandering people. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
30:1212 –1229.
Tran, K., Kakadiaris, I., and Shah, S. (2012). Part-based
motion descriptor image for human action recogni-
tion. Pattern Recognition, 45(7):2562–2572.
Vinciarelli, A., Pantic, M., and Bourlard, H. (2008). So-
cial signal processing: survey of an emerging domain.
Image and Vision Computing, pages 1743 – 1759.
Was, J., Gudowski, B., and Matuszyk, P. J. (2006). Social
distances model of pedestrian dynamics. In Cellular
Automata for Research and Industry, pages 492–501.
VISAPP2013-InternationalConferenceonComputerVisionTheoryandApplications
548