bangladesh. Landscape and Ecological Engineering,
pages 1–14. 10.1007/s11355-010-0147-7.
Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso,
M., Hannon, B., Limburg, K., Naeem, S., O’Neill,
R., Paruelo, J., Raskin, R., Sutton, P., and van den
Belt, M. (1998). The value of the world’s ecosystem
services and natural capital. Ecological Economics,
25(1):3–15.
Darwin, C. (1861). On the Origin of Species by Means of
Natural Selections: Or the Preservation of Favoured
Races in the Struggle for Life. Murray.
Devisch, O., Timmermans, H., Arentze, T., and Borgers, A.
(2009). An agent-based model of residential choice
dynamics in nonstationary housing markets. Environ-
ment and Planning A, 41(8):1997 2013.
Filatova, T., Parker, D., and van der Veen, A. (2009). Agent-
based urban land markets: Agent
´
s pricing behavior,
land prices and urban land use change. Journal of Ar-
tificial Societies and Social Simulation, 12(1):3.
Forsyth, A. and Mussachio, L. (2005). Designing small
parks : a manual for addressing social and ecologi-
cal concerns.
Giles-Corti, B., Broomhall, M. H., Knuiman, M., Collins,
C., Douglas, K., Ng, K., Lange, A., and Donovan,
R. J. (2005). Increasing walking: How important is
distance to, attractiveness, and size of public open
space? American Journal of Preventive Medicine,
28(2, Supplement 2):169 – 176. ¡ce:title¿Active Liv-
ing Research¡/ce:title¿.
Goldberg, D. E. (1990). A note on boltzmann tourna-
ment selection for genetic algorithms and population-
oriented simulated annealing. Complex Systems,
4:445–460.
Holland, J. (1975). Adaptation in natural and artificial sys-
tems. The University of Michigan Press.
Miller, E. J., Hunt, J. D., Abraham, J. E., and Salvini, P. A.
(2004). Microsimulating urban systems. Comput-
ers, Environment and Urban Systems, 28(1-2):9 – 44.
Geosimulation.
Newmann, J. V. (1966). Theory of self-reproducing au-
tomata. Arthur W. Burks ed. (University of Illinois
Press, Urbana IL).
Nowak, D. and McPherson, E. (1993). Quantifying the im-
pact of trees: the chicago urban forest climate project.
Unasylva, 44(173):39–44.
Otter, H. S., van der Veen, A., and de Vriend, H. J. (2001).
Abloom: Location behaviour, spatial patterns, and
agent-based modelling. Journal of Artificial Societies
and Social Simulation, 4.
Parker, D. C. and Filatova, T. (2008). A conceptual design
for a bilateral agent-based land market with heteroge-
neous economic agents. Computers, Environment and
Urban Systems, 32(6):454 – 463. GeoComputation:
Modeling with spatial agents.
Parker, D. C., Hoffmann, M. J., Deadman, P., Parker, D. C.,
Manson, S. M., Manson, S. M., Janssen, M. A., and
Janssen, M. A. (2003). Multi-agent systems for the
simulation of land-use and land-cover change: a re-
view.
Passow, S. S. (1970). Land reserves and teamwork in plan-
ning stockholm. Journal of the American Institute of
Planners, 36(3):179–188.
Pukkala, T. and Kurttila, M. (2005). Examining the per-
formance of six heuristic optimisation techniques in
different forest planning problems. Silva Fennica,
39(1):6780.
Qin, X., Huang, G., and Liu, L. (2010). A genetic-
algorithm-aided stochastic optimization model for
regional air quality management under uncertainty.
Journal of the Air & Waste Management Association,
60(1):63–71.
Rieser, V. and Lemon, O. (2011). Reinforcement Learn-
ing for Adaptive Dialogue Systems: A Data-driven
Methodology for Dialogue Management and Natural
Language Generation. Theory and Applications of
Natural Language Processing. Springer.
Rieser, V., Robinson, D. T., Murray-Rust, D., and Rounsev-
ell, M. (2011). A comparison of genetic algorithms
and reinforcement learning for optimising sustainable
forest management. In GeoComputation.
Riley, C. (2002). Comments on mills & evans. Proceedings
of seminar on Land Use Regulation, Lincoln Institute
for Land Policy. Cambridge Mass.
Robinson, D., Murray-Rust, D., Rieser, V., Milicic, V., and
Rounsevell, M. (2012). Modelling the impacts of
land system dynamics on human well-being: Using an
agent-based approach to cope with data limitations in
koper, slovenia. Computers, Environment and Urban
Systems. Special Issue: Geoinformatics 2010, 36(Is-
sue 2):164–176.
Sanders, L., .Pumain, D., Mathian, H., Gurin-Pace, F., and
Bura, S. (1997). Simpop: a multiagent system for
the study of urbanism. Environment and Planning B:
Planning and Design, 24(2):287–305.
Sasaki, Y. and Box, P. (2003). Agent-based verification of
von th
¨
unen’s location theory. Journal of Artificial So-
cieties and Social Simulation, 6.
Thorsnes, P. (2002). The value of a suburban forest
preserve: Estimates from sales of vacant residential
building lots. Land Economics, 78(3):426–441.
Tyrv
¨
ainen, L. and Miettinen, A. (2000). Property prices
and urban forest amenities. Journal of Environmental
Economics and Management, 39(2):205 – 223.
Wang, N. and Yang, Y. (2009). Target geometry match-
ing problem for hybrid genetic algorithm used to de-
sign structures subjected to uncertainty. In Evolution-
ary Computation, 2009. CEC ’09. IEEE Congress on,
pages 1644 –1651.
Wilson, S. W. (1995). Classifier fitness based on accuracy.
Evolutionary Computation, 3(2):149–175.
Wu, J., Zheng, C., Chien, C. C., and Zheng, L. (2006). A
comparative study of monte carlo simple genetic al-
gorithm and noisy genetic algorithm for cost-effective
sampling network design under uncertainty. Advances
in Water Resources, 29(6):899 – 911.
EvolvingUrbanisationPolicies-UsingaStatisticalModeltoAccelerateOptimisationoverAgent-basedSimulations
181