Table 5: Performance comparison of proposed methodology for minimum variance PI and PID controllers.
Example
MV
(Huang and
Shah, 1999)
PI controller
SOS programming method
(Sendjaja and
Kariwala,2009)
(lower bound, upper bound)
PID controller
SOS programming method
(Sendjaja and
Kariwala,2009)
(lower bound, upper bound)
Proposed
NM-PSO method
(PI-MV)
Proposed
NM-PSO method
(PID-MV)
1 2.9427 (3.5154, 3.5186) (3.0730, 3.0730) 3.5179 3.0679
2 0.0310 (0.0313, 0.0314) (0.0310, 0.0310) 0.0314 0.0310
3 3.0112 (3.1703, 3.1706) (3.0492, 3.0495) 3.1502 3.0493
4 3.4004 (3.4408, 3.4408) (3.4065, 3.4065) 3.4399 3.4059
5 11.9528 (17.7044, 17.7477) (13.6341, 13.8243) 17.7414 13.7207
6 58.3406 (122.4089, 123.6037) (83.5605, 89.6983) 117.4932 85.9108
7 0.2978 (0.5856, 0.5884) (0.4278, 0.4278) 0.5608 0.4166
8 3.0000 (3.7002, 3.7050) (3.2093, 3.2093) 3.7030 3.1923
9 0.3144 (0.5949, 0.5968) (0.4288, 0.4288) 0.5964 0.4199
10 0.0023 (0.0027, 0.0027) (0.0024, 0.0025) 0.0027 0.0024
the proposed algorithm to determine minimum
variance PI/D controllers.
REFERENCES
Agrawal, P., Lakshminarayanan, S., 2003. Tuning
Proportional-Integral-Derivative Controllers using
Achievable Performance Indices, Ind. Eng. Chem.
Res., Vol. 42, pp. 5576-5582.
Åström K.J., 1979. Introduction to Stochastic Control
Theory, Academic Press, London.
Clerc, M., 1999. The swarm and the queen: towards a
deterministic and adaptive particle swarm
optimisation, In proceedings of the congress on
evolutionary computation, Washington DC, United
States of America, pp. 1951-1957.
Eberhart, R.C., Kennedy, J., 1995. A new optimiser using
particle swarm theory. In proceedings of the sixth
international symposium on micro machine and
human science, Nagoya, Japan, pp.39-43.
Harris, T.J., 1989. Assessment of Control Loop
Performance, The Canadian Journal of Chemical
Engineering, Vol. 67, pp. 856-861.
Huang, B., Shah, S.L., 1999. Performance Assessment of
Control Loops: Theory and Applications, Springer-
Verlag, London, UK.
Hugo, A.J., 2006. Performance assessment of single-loop
industrial controllers, Journal of Process Control,
Vol.16, pp.785-794.
Jelali, M., 2006. An overview of control performance
assessment technology and industrial applications,
Control Engineering Practice, vol. 14, pp. 441-466.
Ko, B.S., Edgar, T.F., 2004. PID Control Performance
Assessment: The Single-Loop Case, AIChE Journal,
Vol. 50, No.6, pp.1211-1218.
Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.,
1998. Convergence properties of the Nelder-Mead
Simplex method in low dimensions, Society for
Industrial and Applied Mathematics, Vol.9 No.1, pp.
112-147.
Nelder, J. A., Mead, R., 1965. A simplex method for
function minimization, Computer Journal, Vol.7,
pp.308-131.
Qin, S. Joe., 1998. Control performance monitoring – A
review and assessment, Computers in Chemical
Engineering, vol. 23(2), pp. 173-186, 1998.
Sendjaja, A.Y., Kariwala, V., 2009. Achievable PID
performance using sums of squares programming,
Journal of Process Control, Vol.19, pp.1061-1065.
Shahni, F., Malwatkar, G.M., 2011. Assessment
minimum output variance with PID controllers,
Journal of Process Control, Vol. 21, pp. 678-681.
Veronesi, M., Visioli, A., 2011. Global Minimum-
variance PID Control ,18
th
International Federation of
Automatic Control (IFAC), pp. 7891-7896.
ConstrainedMinimum-VariancePIDControlusingHybridNelder-MeadSimplexandSwarmIntelligence
337