Handling Unbalanced Data in Nocturnal Epileptic Seizure Detection using Accelerometers

Kris Cuppens, Peter Karsmakers, Anouk Van de Vel, Bert Bonroy, Milica Milosevic, Lieven Lagae, Berten Ceulemans, Sabine Van Huffel, Bart Vanrumste

2013

Abstract

Data of nocturnal movements in epileptic patients is marked by an imbalance due to the relative small number of seizures compared to normal nocturnal movements. This makes developing a robust classifier more difficult, especially with respect to reducing the number of false positives while keeping a high sensitivity. In this paper we evaluated different ways to overcome this problem in our application, by using a different weighting of classes and by resampling the minority class. Furthermore, as we only have a limited number of training samples available per patient, additionally it was investigated in which manner the training set size affects the results. We observed that oversampling gives a higher performance than only adjusting the weights of both classes. Compared to its alternatives oversampling based on the probability density function gives the best results. On 2 of 3 patients, this technique gives a sensitivity of 95% or more and a PPV more than 70%. Furthermore, an increased imbalance in the dataset leads to lower performance, whereas the size of the dataset has little influence.

References

  1. Alpaydin, E. (2004). Introduction to Machine Learning. MIT Press.
  2. Azar, N. J., Tayah, T. F., Wang, L., Song, Y., and AbouKhalil, B. W. (2008). Postictal breathing pattern distinguishes epileptic from nonepileptic convulsive seizures. Epilepsia, 49(1):132-7.
  3. Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27.
  4. Chapman, D., Panelli, R., Hanna, J., and Jeffs, T. (2011). Sudden unexpected death in epilepsy: continuing the global conversation. Camberwell, Australia.
  5. Chawla, N., Bowyer, K., Hall, L., and Kegelmeyer, W. (2002). SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16:321-357.
  6. Cherkassky, V. and Mulier, F. (1998). Learning from Data: Concepts, Theory, and Methods. John Wiley & Sons.
  7. Cuppens, K., Karsmakers, P., Van de Vel, A., Luca, S., Bonroy, B., Milosevic, M., Croonenborghs, T., Ceulemans, B., Lagae, L., Van Huffel, S., and Vanrumste, B. (2012). Accelerometer based home monitoring for detection of nocturnal hypermotor seizures based on novelty detection. internal report.
  8. Cuppens, K., Lagae, L., Ceulemans, B., Van Huffel, S., and Vanrumste, B. (2009). Detection of nocturnal frontal lobe seizures in pediatric patients by means of accelerometers: a first study. In Proc. of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009), volume 1-20, pages 6608-6611.
  9. Dalton, A., Patel, S., Chowdhury, A., Welsh, M., Pang, T., Schachter, S., Olaighin, G., and Bonato, P. (2010). Detecting epileptic seizures using wearable sensor technologies. In Proc. of the First AMA-IEEE Medical Technology Conference on Individualized Healtcare.
  10. He, H.and Garcia, E. (2009). Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21:1263-1284.
  11. Husain, A. M. and Sinha, S. R. (2011). Nocturnal epilepsy in adults. J Clin Neurophysiol., 28(2):141-5.
  12. Rémi, J., Silva Cunha, J. P., Vollmar, C., Topc¸uo?glu, O. B., Meier, A., Ulowetz, S., Beleza, P., and Noachtar, S. (2011). Quantitative movement analysis differentiates focal seizures characterized by automatisms. Epilepsy Behav., 20(4):642-7.
  13. Tinuper, P., Provini, F., Bisulli, F., and Lugaresi, E. (2005). Hyperkinetic manifestations in nocturnal frontal lobe epilepsy. semeiological features and physiopathological hypothesis. Neurol Sci., 26(suppl 3):210-4.
  14. Tinuper, P., Provini, F., Bisulli, F., Vignatelli, L., Plazzi, G., Vetrugno, R., Montagna, P., and Lugaresi, E. (2007). Movement disorders in sleep: guidelines for differentiating epileptic from non-epileptic motor phenomena arising from sleep. Sleep Med Rev., 11(4):255-67.
Download


Paper Citation


in Harvard Style

Cuppens K., Karsmakers P., Van de Vel A., Bonroy B., Milosevic M., Lagae L., Ceulemans B., Van Huffel S. and Vanrumste B. (2013). Handling Unbalanced Data in Nocturnal Epileptic Seizure Detection using Accelerometers . In Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-8565-41-9, pages 447-452. DOI: 10.5220/0004264704470452


in Bibtex Style

@conference{icpram13,
author={Kris Cuppens and Peter Karsmakers and Anouk Van de Vel and Bert Bonroy and Milica Milosevic and Lieven Lagae and Berten Ceulemans and Sabine Van Huffel and Bart Vanrumste},
title={Handling Unbalanced Data in Nocturnal Epileptic Seizure Detection using Accelerometers},
booktitle={Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2013},
pages={447-452},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004264704470452},
isbn={978-989-8565-41-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Handling Unbalanced Data in Nocturnal Epileptic Seizure Detection using Accelerometers
SN - 978-989-8565-41-9
AU - Cuppens K.
AU - Karsmakers P.
AU - Van de Vel A.
AU - Bonroy B.
AU - Milosevic M.
AU - Lagae L.
AU - Ceulemans B.
AU - Van Huffel S.
AU - Vanrumste B.
PY - 2013
SP - 447
EP - 452
DO - 10.5220/0004264704470452