4D Polygonal Approximation of the Skeleton for 3D Object Decomposition

Luca Serino, Carlo Arcelli, Gabriella Sanniti di Baja

2013

Abstract

We improve a method to decompose a 3D object into parts (called kernels, simple-regions and bumps) starting from the partition of the distance labeled skeleton into components (called complex-sets, simple-curves and single-points). In particular, each simple-curve of the partition is here interpreted as a curve in a 4D space, where the coordinates of each point are related to the three spatial coordinates of the corresponding voxel of the 3D simple-curve and to its associated distance label. Then, a split type polygonal approximation method is employed to subdivide, in the limits of the adopted tolerance, each curve in the 4D space into straight-line segments. Vertices found in the 4D curve are used to identify corresponding vertices in the 3D simple-curve. The skeleton partition is then used to recover the parts into which the object is decomposed. Finally, region merging is taken into account to obtain a decomposition of the object more in accordance with human intuition.

References

  1. C. Arcelli, G. Sanniti di Baja, L. Serino, 2011. Distance driven skeletonization in voxel images, IEEE Trans. PAMI, 33, 709-720.
  2. H. Blum, 1973. Biological shape and visual science, J. Theor. Biol., 38, 205-287.
  3. G. Borgefors, 1996. On digital distance transform in three dimensions, CVIU, 64, 368-376.
  4. Z-Q. Cheng, B. Li, G. Dang, S-Y. Jin, 2008. Meaningful Mesh Segmentation Guided by the 3D Short-Cut Rule, Proc. AGMP 2008, LNCS 4975, 244-257, Springer.
  5. F.de Goes, S. Goldenstein, L. Velho, 2008. A Hierarchical Segmentation of Articulated Bodies, Computer Graphics Forum, 27, 1349-1356.
  6. D. D. Hoffman, W. A. Richards, 1984. Parts of Recognition, Cognition, 18, 65-96.
  7. D. Macrini, K. Siddiqi, S. Dickinson, 2008. From Skeletons to Bone Graphs: Medial Abstraction for Object Recognition, Proc. CVPR 2008, 1-8.
  8. U. Ramer, 1972. An Iterative procedure for the polygonal approximation of plane curves, CGIP, 1, 244-256.
  9. L. Serino, G. Sanniti di Baja, C. Arcelli, 2010. Object decomposition via curvilinear skeleton partition, Proc. ICPR 2010, 4081-4084, IEEE CS Press.
  10. L. Serino, G. Sanniti di Baja, C. Arcelli, 2011. “Using the skeleton for 3D object decomposition”, in A. Heyden and F. Kahl (Eds.): SCIA 2011, LNCS 6688, 447-456, Springer.
  11. A. Shamir, 2008. A Survey on Mesh Segmentation Techniques, Computer Graphics Forum, 27, 1539- 1556.
  12. P. Shilane, P. Min, M. Kazhdan, T. Funkhouser, 2004. The Princeton Shape Benchmark, Shape Modeling International, Genova, Italy.
  13. M. Singh, G. D. Seyranian, D. D. Hoffman, 1999. Parsing Silhouettes: the Short-Cut Rule, Perception&Psychophysics, 61, 636-660.
  14. S. Svensson, G. Sanniti di Baja, 2002. Using distance transforms to decompose 3D discrete objects, IMAVIS, 20, 529-540.
Download


Paper Citation


in Harvard Style

Serino L., Arcelli C. and Sanniti di Baja G. (2013). 4D Polygonal Approximation of the Skeleton for 3D Object Decomposition . In Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-8565-41-9, pages 467-472. DOI: 10.5220/0004265204670472


in Bibtex Style

@conference{icpram13,
author={Luca Serino and Carlo Arcelli and Gabriella Sanniti di Baja},
title={4D Polygonal Approximation of the Skeleton for 3D Object Decomposition},
booktitle={Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2013},
pages={467-472},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004265204670472},
isbn={978-989-8565-41-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - 4D Polygonal Approximation of the Skeleton for 3D Object Decomposition
SN - 978-989-8565-41-9
AU - Serino L.
AU - Arcelli C.
AU - Sanniti di Baja G.
PY - 2013
SP - 467
EP - 472
DO - 10.5220/0004265204670472