the graph drawing problem to minimize edge length in
the known approach (Gronemann and J
¨
unger, 2012).
To achieve this goal we proposed a heuristic that ex-
ploits the degrees of freedom in the polygon partition-
ing procedure in order to avoid long edges. The effec-
tiveness of the method has been demonstrated by an
experimental evaluation using real-world instances.
ACKNOWLEDGEMENTS
We would like to thank Claude Ostermann and
Philipp Thiel for their valuable feedback and for shar-
ing their chemical knowledge. Research was sup-
ported by the German Research Foundation (DFG),
priority programme “Algorithm Engineering” (SPP
1307).
REFERENCES
Bon, R. S. and Waldmann, H. (2010). Bioactivity-guided
navigation of chemical space. Acc. Chem. Res.,
43(8):1103–1114.
Brown, N. (2009). Chemoinformatics - an introduction for
computer scientists. ACM Comput. Surv., 41(2).
de Berg, M., Onak, K., and Sidiropoulos, A. (2010). Fat
polygonal partitions with applications to visualization
and embeddings. CoRR, abs/1009.1866.
Fabrikant, S. I., Montello, D. R., and Mark, D. M. (2010).
The natural landscape metaphor in information visu-
alization: The role of commonsense geomorphology.
J. Am. Soc. Inf. Sci. Technol., 61(2):253–270.
Fruchterman, T. M. J. and Reingold, E. M. (1991). Graph
drawing by force-directed placement. Softw., Pract.
Exper., 21(11):1129–1164.
Gansner, E. R., Hu, Y., and Kobourov, S. G. (2010). GMap:
Visualizing graphs and clusters as maps. In Pacific
Visualization Symposium (PacificVis), pages 201–208.
IEEE.
Gansner, E. R., Hu, Y., Kobourov, S. G., and Volinsky, C.
(2009). Putting recommendations on the map: visual-
izing clusters and relations. In Proc. ACM Conference
on Recommender Systems, pages 345–348.
Girvan, M. and Newman, M. E. J. (2002). Community
structure in social and biological networks. Proc. of
the National Academy of Sciences, 99:7821–7826.
Gronemann, M. and J
¨
unger, M. (2012). Drawing clustered
graphs as topographic maps. In 20th International
Symposium on Graph Drawing.
Herhaus, C., Karch, O., Bremm, S., and Rippmann,
F. (2009). MolWind - mapping molecule spaces
to geospatial worlds. Chemistry Central Journal,
3(Suppl 1):P32.
Huang, M. and Eades, P. (1998). A fully animated interac-
tive system for clustering and navigating huge graphs.
In Graph Drawing, volume 1547 of Lecture Notes in
Computer Science, pages 374–383. Springer.
Irwin, J. J. (2009). Staring off into chemical space. Nat.
Chem. Biol., 5(8):536–537.
Johnson, B. and Shneiderman, B. (1991). Tree-maps: a
space-filling approach to the visualization of hierar-
chical information structures. In Proc. of the 2nd Con-
ference on Visualization, pages 284–291.
Klein, K., Kriege, N., and Mutzel, P. (2012). Scaf-
fold Hunter – visual analysis of chemical compound
databases. In Proc. Int. Conf. on Computer Graphics
Theory and Applications and Int. Conf. on Informa-
tion Visualization Theory and Applications (GRAPP
& IVAPP), pages 626–635.
Lounkine, E., Wawer, M., Wassermann, A. M., and Bajo-
rath, J. (2010). SARANEA: a freely available program
to mine structure-activity and structure-selectivity re-
lationship information in compound data sets. J.
Chem. Inf. Model., 50(1):68–78.
Maggiora, G. M. and Shanmugasundaram, V. (2011).
Molecular similarity measures. Methods in Molecu-
lar Biology, 672:39–100.
Schuffenhauer, A., Ertl, P., Roggo, S., Wetzel, S., Koch,
M. A., and Waldmann, H. (2007). The scaffold tree
- visualization of the scaffold universe by hierarchical
scaffold classification. J. Chem. Inf. Model., 47(1):47–
58.
Schuffenhauer, A. and Varin, T. (2011). Rule-based classi-
fication of chemical structures by scaffold. Molecular
Informatics, 30(8):646–664.
Schulz, H.-J. (2011). Treevis.net: A tree visualization ref-
erence. IEEE Computer Graphics and Applications,
31(6):11–15.
Steinbeck, C., Hoppe, C., Kuhn, S., Floris, M., Guha, R.,
and Willighagen, E. L. (2006). Recent developments
of the chemistry development kit (CDK) - an open-
source java library for chemo- and bioinformatics.
Current pharmaceutical design, 12(17):2111–2120.
Strobelt, H., Bertini, E., Braun, J., Deussen, O., Groth, U.,
Mayer, T. U., and Merhof, D. (2012). HiTSEE KN-
IME: a visualization tool for hit selection and analysis
in high-throughput screening experiments for the KN-
IME platform. BMC Bioinformatics, 13 Suppl 8:S4.
Sugiyama, K. and Misue, K. (1991). Visualization of struc-
tural information: Automatic drawing of compound
digraphs. IEEE Trans. SMC, 21(4):876–892.
Wawer, M., Peltason, L., Weskamp, N., Teckentrup, A.,
and Bajorath, J. (2008). Structure-activity relationship
anatomy by network-like similarity graphs and local
structure-activity relationship indices. J. Med. Chem.,
51(19):6075–6084.
Wetzel, S., Klein, K., Renner, S., Rauh, D., Oprea, T. I.,
Mutzel, P., and Waldmann, H. (2009). Interactive ex-
ploration of chemical space with Scaffold Hunter. Na-
ture Chemical Biology, 5(8):581–583.
IVAPP2013-InternationalConferenceonInformationVisualizationTheoryandApplications
524