Measuring Linearity of Curves
Joviša Žunić, Jovanka Pantović, Paul L. Rosin
2013
Abstract
In this paper we define a new linearity measure which can be applied to open curve segments. The new measure ranges over the interval (0;1]; and produces the value 1 if and only if the measured line is a perfect straight line segment. Also, the new linearity measure is invariant with respect to translations, rotations and scaling transformations.
References
- Alimog?lu, F. and Alpaydin, E. (2001). Combining multiple representations for pen-based handwritten digit recognition. ELEKTRIK: Turkish Journal of Electrical Engineering and Computer Sciences, 9(1):1-12.
- Benhamou, S. (2004). How to reliably estimate the tortuosity of an animals path: straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology, 229(2):209-220.
- Bowman, E., Soga, K., and Drummond, T. (2001). Particle shape characterisation using fourier descriptor analysis. Geotechnique, 51(6):545-554.
- Canny, J. (1986). A computational approach to edge detection. IEEE Trans. on Patt. Anal. and Mach. Intell., 8(6):679-698.
- Direkoglu, C. and Nixon, M. (2011). Shape classification via image-based multiscale description. Pattern Recognition, 44(9):2134-2146.
- El-ghazal, A., Basir, O., and Belkasim, S. (2009). Farthest point distance: A new shape signature for Fourier descriptors. Signal Processing: Image Communication, 24(7):572-586.
- Gautama, T., Mandic, D., and Hull, M. V. (2004). A novel method for determining the nature of time series. IEEE Transactions on Biomedical Engineering, 51(5):728-736.
- Gautama, T., Mandic, D., and Hulle, M. V. (2003). Signal nonlinearity in fMRI: A comparison between BOLD and MION. IEEE Transactions on Medical Images, 22(5):636-644.
- Hu, M. (1962). Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory, 8(2):179-187.
- Imre, A. (2009). Fractal dimension of time-indexed paths. Applied Mathematics and Computation, 207(1):221- 229.
- Manay, S., Cremers, D., Hong, B.-W., Yezzi, A., and Soatto, S. (2006). Integral invariants for shape matching. IEEE Trans. on Patt. Anal. and Mach. Intell., 28(10):1602-1618.
- Melter, R., Stojmenovic, I., and Z?unic, J. (1993). A new characterization of digital lines by least square fits. Pattern Recognition Letters, 14(2):83-88.
- Mio, W., Srivastava, A., and Joshi, S. (2007). On shape of plane elastic curves. Int. Journal of Computer Vision, 73(3):307-324.
- Munich, M. and Perona, P. (2003). Visual identification by signature tracking. IEEE Trans. on Patt. Anal. and Mach. Intell., 25(2):200-217.
- Pérez, P., Gangnet, M., and Blake, A. (2003). Poisson image editing. ACM Trans. Graph., 22(3):313-318.
- Rahtu, E., Salo, M., and Heikkilä, J. (2006). A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. on Patt. Anal. and Mach. Intell., 28(9):1501-1512.
- Rosin, P. (1997). Edges: saliency measures and automatic thresholding. Machine Vision and Applications, 9(4):139-159.
- Ruberto, C. D. and Dempster, A. (2000). Circularity measures based on mathematical morphology. Electronics Letters, 36(20):1691-1693.
- Schweitzer, H. and Straach, J. (1998). Utilizing moment invariants and gröbner bases to reason about shapes. Computational Intelligence, 14(4):461-474.
- Stojmenovic, M., Nayak, A., and Z?unic, J. (2008). Measuring linearity of planar point sets. Pattern Recognition, 41(8):2503-2511.
- Stojmenovic, M. and Z?unic, J. (2008). Measuring elongation from shape boundary. Journal Mathematical Imaging and Vision, 30(1):73-85.
- Valentine, F. (1964). Convex Sets. McGraw-Hill, New York.
- Z?unic, J., Hirota, K., and Rosin, P. (2010). A Hu moment invariant as a shape circularity measure. Pattern Recognition, 43(1):47-57.
- Z?unic, J. and Rosin, P. (2003). Rectilinearity meaurements for polygons. IEEE Trans. on Patt. Anal. and Mach. Intell., 25(9):1193-3200.
- Z?unic, J. and Rosin, P. (2011). Measuring linearity of open planar curve segments. Image Vision Computing, 29(12):873-879.
- Zhang, D. and Lu, G. (2005). Study and evaluation of different Fourier methods for image retrieval. Image and Vision Computing, 23(1):3349.
Paper Citation
in Harvard Style
Žunić J., Pantović J. and L. Rosin P. (2013). Measuring Linearity of Curves . In Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-8565-41-9, pages 388-395. DOI: 10.5220/0004267603880395
in Bibtex Style
@conference{icpram13,
author={Joviša Žunić and Jovanka Pantović and Paul L. Rosin},
title={Measuring Linearity of Curves},
booktitle={Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2013},
pages={388-395},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004267603880395},
isbn={978-989-8565-41-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Measuring Linearity of Curves
SN - 978-989-8565-41-9
AU - Žunić J.
AU - Pantović J.
AU - L. Rosin P.
PY - 2013
SP - 388
EP - 395
DO - 10.5220/0004267603880395