combination scheme for fuzzy clustering. In AFSS’02,
pages 332–338.
Fern, X. Z. and Brodley, C. E. (2004). Solving cluster en-
semble problems by bipartite graph partitioning. In
Proc ICML ’04.
Fred, A. (2001). Finding consistent clusters in data parti-
tions. In Kittler, J. and Roli, F., editors, Multiple Clas-
sifier Systems, volume 2096, pages 309–318. Springer.
Fred, A. and Jain, A. (2002). Data clustering using evidence
accumulation. In Proc. of the 16th Int’l Conference on
Pattern Recognition, pages 276–280.
Fred, A. and Jain, A. (2005). Combining multiple cluster-
ing using evidence accumulation. IEEE Trans Pattern
Analysis and Machine Intelligence, 27(6):835–850.
Ghosh, J. and Acharya, A. (2011). Cluster ensembles. Wiley
Interdisc. Rew.: Data Mining and Knowledge Discov-
ery, 1(4):305–315.
Griffiths, T. L. and Steyvers, M. (2004). Finding scientific
topics. Proc Natl Acad Sci U S A, 101 Suppl 1:5228–
5235.
Jain, A. K. and Dubes, R. (1988). Algorithms for Clustering
Data. Prentice Hall.
Kachurovskii, I. R. (1960). On monotone operators and
convex functionals. Uspekhi Mat. Nauk, 15(4):213–
215.
Lourenc¸o, A., Fred, A., and Figueiredo, M. (2011). A
generative dyadic aspect model for evidence accumu-
lation clustering. In Proc. 1st Int. Conf. Similarity-
based pattern recognition, SIMBAD’11, pages 104–
116, Berlin, Heidelberg. Springer-Verlag.
Lourenc¸o, A., Fred, A., and Jain, A. K. (2010). On the
scalability of evidence accumulation clustering. In
20th International Conference on Pattern Recognition
(ICPR), pages 782 –785, Istanbul Turkey.
Luenberger, D. G. and Ye, Y. (2008). Linear and Nonlinear
Programming. Springer, third edition edition.
Manning, C. D., Raghavan, P., and Schtze, H. (2008). In-
troduction to Information Retrieval. Cambridge Uni-
versity Press, New York, NY, USA.
Meila, M. (2003). Comparing clusterings by the variation
of information. In Springer, editor, Proc. of the Six-
teenth Annual Conf. of Computational Learning The-
ory (COLT).
Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001). On spectral
clustering: Analysis and an algorithm. In NIPS, pages
849–856. MIT Press.
Rota Bul
`
o, S., Lourenc¸o, A., Fred, A., and Pelillo, M.
(2010). Pairwise probabilistic clustering using ev-
idence accumulation. In Proc. 2010 Int. Conf. on
Structural, Syntactic, and Statistical Pattern Recog-
nition, SSPR&SPR’10, pages 395–404.
Sculley, D. (2010). Web-scale k-means clustering. In
Proceedings of the 19th international conference on
World wide web, WWW ’10, pages 1177–1178, New
York, NY, USA. ACM.
Steyvers, M. and Griffiths, T. (2007). Probabilistic topic
models, chapter Latent Semantic Analysis: A Road to
Meaning. Laurence Erlbaum.
Strehl, A. and Ghosh, J. (2002). Cluster ensembles - a
knowledge reuse framework for combining multiple
partitions. J. of Machine Learning Research 3.
Topchy, A., Jain, A., and Punch, W. (2004). A mixture
model of clustering ensembles. In Proc. of the SIAM
Conf. on Data Mining.
Topchy, A., Jain, A. K., and Punch, W. (2005). Clustering
ensembles: Models of consensus and weak partitions.
IEEE Trans. Pattern Anal. Mach. Intell., 27(12):1866–
1881.
Wang, H., Shan, H., and Banerjee, A. (2009). Bayesian
cluster ensembles. In 9th SIAM Int. Conf. on Data
Mining.
Wang, P., Domeniconi, C., and Laskey, K. B. (2010). Non-
parametric bayesian clustering ensembles. In ECML
PKDD’10, pages 435–450.
ProbabilisticEvidenceAccumulationforClusteringEnsembles
67