(grant 086901/Z/08/Z) and the Marie Curie IEF pro-
gramme (grant 299605, SP-MORPH).
REFERENCES
Aynechi, N., Larson, B., Leon-Salazar, V., et al. (2011). Ac-
curacy and precision of a 3D anthropometric facial
analysis with and without landmark labeling before
image acquisition. Angle Orthod, 81(2):245–252.
Bariya, P., Novatnack, J., Schwartz, G., et al. (2012). 3D
geometric scale variability in range images: features
and descriptors. Int J Comput Vis, 99(2):232–255.
Bronstein, A., Bronstein, M., Castellani, U., et al. (2010).
SHREC 2010: robust correspondence benchmark. In
Eurographics Workshop on 3D Object Retrieval.
Chen, H. and Bhanu, B. (2007). 3D free-form object recog-
nition in range images using local surface patches.
Pattern Recogn Lett, 28(10):1252–1262.
Creusot, C., Pears, N., and Austin, J. (2011). Automatic
keypoint detection on 3D faces using a dictionary of
local shapes. In Proc. 3DIMPVT, pages 204–211.
Dagum, L. and Menon, R. (1998). OpenMP: an industry
standard API for shared-memory programming. IEEE
Computat Sci Eng, 5(1):46–55.
Farkas, L. (1994). Anthropometry of the head and face.
Raven Press (New York), 2nd ed.
Frome, A., Huber, D., Kolluri, R., et al. (2004). Recogniz-
ing objects in range data using regional point descrip-
tors. In Proc. ECCV, pages 224–237.
Guo, Q., Guo, F., and Shao, J. (2010). Irregular shape
symmetry analysis: Theory and application to quan-
titative galaxy classification. IEEE T Pattern Anal,
32(10):1730–1743.
Gupta, S., Markey, M., and Bovik, A. (2010). Antopometric
3D face recognition. Int J Comput Vis, 90(3):331–349.
Hennessy, R., Kinsella, A., and Waddington, J. (2002).
3D laser surface scanning and geometric morpho-
metric analysis of craniofacial shape as an index of
cerebro-craniofacial morphogenesis. Biol Psychiat,
51(6):507–514.
Johnson, A. and Hebert, M. (1999). Using spin images
for efficient object recognition in cluttered 3D scenes.
IEEE T Pattern Anal, 21(5):433–449.
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2004).
Symmetry descriptors and 3D shape matching. In Eu-
rograph. Symp. on Geometry process, pages 115–123.
Kortgen, M., Park, G., Novotni, M., et al. (2003). 3D shape
matching with 3D shape contexts. In Central Europ
Seminar on Comput Graph.
Passalis, G., Perakis, N., Theoharis, T., et al. (2011). Us-
ing facial symmetry to handle pose variations in real-
world 3D face recognition. IEEE T Pattern Anal,
33(10):1938–1951.
Rusu, R., Blodow, N., and Beetz, M. (2009). Fast point fea-
ture histograms (FPFH) for 3D registration. In Proc.
ICRA, pages 3212–3217.
Rusu, R. and Cousins, S. (2011). 3D is here: Point cloud
library (PCL). In Proc. ICRA, pages 1–4,
Segundo, M., Silva, L., Bellon, O. P., et al. (2010). Auto-
matic face segmentation and facial landmark detection
in range images. IEEE T Syst Man Cy B, 40(5):1319–
1330.
Steder, B., Rusu, R., Konolige, K., et al. (2011). Point fea-
ture extraction on 3D range scans taking into account
object boundaries. In Proc. ICRA, pages 2601–2608.
Sukno, F., Waddington, J., and Whelan, P. (2012). Com-
paring 3D descriptors for local search of craniofacial
landmarks. In Proc. ISVC, pages 92–103.
Toma, A., Zhurov, A., Playle, R., et al. (2009). Re-
producibility of facial soft tissue landmarks on 3D
lasser-scanned facial images. Orthod Craniofac Res,
12(1):33–42.
Tombari, F., Salti, S., and Stefano, L. D. (2010). Unique
shape context for 3D data description. In Proc. ACM
Workshop on 3D object retrieval, pages 57–62.
Zaharescu, A., Boyer, E., and Horaud, R. (2012). Keypoints
and local descriptors of scalar functions on 2D mani-
folds. Int J Comput Vision, 99(2):232–255.
Zhang, Y. (2009). Intrinsic shape signatures: a shape de-
scriptor for 3D object recognition. In Proc. ICCV
Workshops, pages 689–696.
APPENDIX
Starting from the definition of A and S :
A (m,a) = 1− S (m,a) = 1 −
∑
j
min(m
j
,m
j+a
)
∑
j
m
j
=
∑
j
m
j
−
∑
j
min(m
j
,m
j+a
)
∑
j
m
j
(22)
Now we use the following equality:
2
∑
j
m
j
=
∑
j
max(m
j
,m
j+a
) + min(m
j
,m
j+a
)
(23)
which holds because for every pair (m
j
,m
j+a
) one el-
ement is the maximum and the other one the mini-
mum, hence adding both guarantees to include each
element of m exactly twice in the summation (recall
that j + a is an addition module the cardinality of m).
Then, in (23):
∑
j
m
j
−
∑
j
min(m
j
,m
j+a
) =
=
1
2
∑
j
max(m
j
,m
j+a
) − min(m
j
,m
j+a
)
=
1
2
∑
j
|m
j
− m
j+a
| (24)
which directly leads to our final result:
A (m,a) =
1
2
∑
j
|m
j
− m
j+a
|
∑
j
m
j
(25)
RotationallyInvariant3DShapeContextsusingAsymmetryPatterns
17