struction. For such shapes, the object-space skele-
tonization methods mentioned in Sec. 2 should be
used.
5 CONCLUSIONS
We have presented a new method for computing
curve-skeletons as unstructured point clouds. Our
method extends the view-based curve-skeleton ex-
traction of Livesu et al. in several directions: (1)
Using salience-based skeletons to guarantee preser-
vation of terminal skeleton branches, (2) using depth
information to reduce the number of false-positives in
the 3D skeleton reconstruction, and (3) sharpening the
obtained point-cloud representation to better approx-
imate the 1D singularity locus of the curve skeleton.
We trade off speed for accuracy, by generating more
conservative skeleton samples and using more view-
points. However, by using a GPU implementation,
we achieve the same speed as the original method,
but deliver a much cleaner and sharper 3D skeleton
point-cloud approximation. Overall, our method can
be used either as a front-end for reconstructing line-
based representations of 3D curve skeletons, or for di-
rectly rendering such skeletons as unstructured point
clouds.
Future work can improve the point matching ac-
curacy, for example by using optical flow models
or exploiting geometric variability properties of 2D
skeletons. Separately, implementing the 3D geodesic-
based curve-skeleton detector of (Dey and Sun, 2006)
by using the 2D collapsed boundary metric ρ (Eqn. 5)
is a promising way for recovering highly accurate
curve skeletons in this view-based framework.
REFERENCES
Au, O. K. C., Tai, C., Chu, H., Cohen-Or, D., and Lee, T.
(2008). Skeleton extraction by mesh contraction. In
Proc. ACM SIGGRAPH, pages 441–449.
Bai, X., Latecki, L., and Liu, W.-Y. (2007). Skeleton prun-
ing by contour partitioning with discrete curve evolu-
tion. IEEE TPAMI, 3(29):449–462.
Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., and Su,
Z. (2010a). Point cloud skeletons via laplacian-based
contraction. In Proc. IEEE SMI, pages 187–197.
Cao, T., Tang, K., Mohamed, A., and Tan, T. (2010b). Paral-
lel banding algorithm to compute exact distance trans-
form with the GPU. In Proc. SIGGRAPH I3D Symp.,
pages 134–141.
Cornea, N., Silver, D., and Min, P. (2007). Curve-skeleton
properties, applications, and algorithms. IEEE TVCG,
13(3):87–95.
Cornea, N., Silver, D., Yuan, X., and Balasubramanian, R.
(2005). Computing hierarchical curve-skeletons of 3D
objects. Visual Comput., 21(11):945–955.
Dey, T. and Sun, J. (2006). Defining and computing curve
skeletons with medial geodesic functions. In Proc.
SGP, pages 143–152. IEEE.
Hassouna, M. and Farag, A. (2009). Variational curve
skeletons using gradient vector flow. IEEE TPAMI,
31(12):2257–2274.
Jalba, A., Kustra, J., and Telea, A. (2012). Comput-
ing surface and curve skeletons from large meshes
on the GPU. IEEE TPAMI. accepted; see
http://www.cs.rug.nl/∼alext/PAPERS/PAMI12.
Liu, L., Chambers, E., Letscher, D., and Ju, T. (2010). A
simple and robust thinning algorithm on cell com-
plexes. CGF, 29(7):22532260.
Livesu, M., Guggeri, F., and Scateni, R. (2012). Re-
constructing the curve-skeletons of 3D shapes
using the visual hull. IEEE TVCG, (PrePrints). http://
doi.ieeecomputersociety.org/10.1109/TVCG.2012.71.
Ma, J., Bae, S. W., and Choi, S. (2012). 3D medial axis
point approximation using nearest neighbors and the
normal field. Visual Comput., 28(1):7–19.
Prohaska, S. and Hege, H. C. (2002). Fast visualization
of plane-like structures in voxel data. In Proc. IEEE
Visualization, page 2936.
Reniers, D., van Wijk, J. J., and Telea, A. (2008). Com-
puting multiscale skeletons of genus 0 objects using a
global importance measure. IEEE TVCG, 14(2):355–
368.
Siddiqi, K. and Pizer, S. (2009). Medial Representations:
Mathematics, Algorithms and Applications. Springer.
Stolpner, S., Whitesides, S., and Siddiqi, K. (2009). Sam-
pled medial loci and boundary differential geometry.
In Proc. IEEE 3DIM, pages 87–95.
Strzodka, R. and Telea, A. (2004). Generalized distance
transforms and skeletons in graphics hardware. In
Proc. VisSym, pages 221–230.
Tagliasacchi, A., Alhashim, I., Olson, M., and Zhang, H.
(2012). Skeletonization by mean curvature flow. In
Proc. Symp. Geom. Proc., pages 342–350.
Tagliasacchi, A., Zhang, H., and Cohen-Or, D. (2009).
Curve skeleton extraction from incomplete point
cloud. In Proc. SIGGRAPH, pages 541–550.
Telea, A. (2012a). Feature preserving smoothing of shapes
using saliency skeletons. Visualization in Medicine
and Life Sciences, pages 155–172.
Telea, A. (2012b). GPU skeletonization code.
www.cs.rug.nl/svcg/Shapes/CUDASkel.
Telea, A. and Jalba, A. (2012). Computing curve skeletons
from medial surfaces of 3d shapes. In Proc. Theory
and Practice of Computer Graphics (TPCG), pages
224–232. Eurographics.
Telea, A. and van Wijk, J. J. (2002). An augmented fast
marching method for computing skeletons and center-
lines. In Proc. VisSym, pages 251–259.
VISAPP2013-InternationalConferenceonComputerVisionTheoryandApplications
246