Equivalence between Two Flowshop Problems - MaxPlus Approach

Nhat Vinh Vo, Christophe Lenté

2013

Abstract

In this paper, a flowshop problem with minimal and maximal delays, setup and removal times is tackled. It is shown that this problem is equivalent to another flowshop problem with only minimal and maximal delays, which can be seen as a central problem. The proof is done using an algebraic way which allows to identify the role of each constraint, once the modeling is performed.

References

  1. Augusto, V., Lente, C., and Bouquard, J. L. (2006). Résolution d'un flowshop avec delais minimaux et maximaux. In MOSIM.
  2. Baccelli, F., Cohen, G., Olsder, G., and Quadrat, J. (1992). Synchronisation and Linearity: An Algebra for Discrete Event Systems. John Wiley and Sons, New York.
  3. Bouquard, J. and Lenté, C. (2006). Two-machine flow shop scheduling problems with minimal and maximal delays. 4'OR, 4(1):15-28.
  4. Bouquard, J., Lente, C., and Billaut, J. (2006). Application of an optimization problem in Max-Plus algebra to scheduling problems. Discrete Applied Mathematics, 154(15):2064-2079.
  5. Carpaneto, G., Dell'amico, M., and Toth, P. (1995). Carpaneto, Dell'amico, Toth - 1995 - Exact solution of large asymmetric traveling salesman problems.pdf. ACM Transactions on Methematical Software, 21(4):394-409.
  6. Cohen, G., Dubois, D., Quadrat, J., and Viot, M. (1985). A linear system-theoretic view of discret-event processes and its use for performance evaluation in manufacturing. IEEE Trans. Automatic Control, 30:210- 220.
  7. Fondrevelle, J., Oulamara, A., and Portmann, M.-C. (2006). Permutation flowshop scheduling problems with maximal and minimal time lags. Computers & Operations Research, 33:1540-1556.
  8. Gaubert, S. (1992). Théorie des systèmes linéaires dans les dioïdes. PhD thesis.
  9. Gaubert, S. and Mairesse, J. (1999). Modeling and analysis of timed petri nets using heaps of pieces. IEEE Trans. Automatic Control, 44(4):683-698.
  10. Giffler, B. (1963). Schedule algebras and their use in formulating general systems simulations,. in ”Industrial scheduling”, Muth and Thompson (eds.),Prentice Hall, New Jersey (U.S.A.).
  11. Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5(2):287-326.
  12. Gunawardena, J. (1998). Idempotency. Publications of the Newton Institute, Cambridge University Press.
  13. Hanen, C. and Munier, A. (1995). Cyclic scheduling on parallel processors: an overview. In Chretienne, P., Coffman, E., Lenstra, J., and Liu, Z., editors, Scheduling Theory and its Applications, pages 193-226. John Wiley.
  14. Lenté, C. (Nov. 2001). Analyse Max-Plus de problèmes d'ordonnancement de type Flowshop. Thèse de doctorat, Université Frano¸is Rabelais de Tours.
Download


Paper Citation


in Harvard Style

Vo N. and Lenté C. (2013). Equivalence between Two Flowshop Problems - MaxPlus Approach . In Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-8565-40-2, pages 322-325. DOI: 10.5220/0004278903220325


in Bibtex Style

@conference{icores13,
author={Nhat Vinh Vo and Christophe Lenté},
title={Equivalence between Two Flowshop Problems - MaxPlus Approach},
booktitle={Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2013},
pages={322-325},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004278903220325},
isbn={978-989-8565-40-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - Equivalence between Two Flowshop Problems - MaxPlus Approach
SN - 978-989-8565-40-2
AU - Vo N.
AU - Lenté C.
PY - 2013
SP - 322
EP - 325
DO - 10.5220/0004278903220325