analysis tasks such as fuzzy object recognition. Sec-
ondly, we can exploit the spatial and topological re-
lations of medial axes of consecutive image layers to
perform new types of image editing, e.g. fuzzy object
deformation, and also to study new methods for im-
age compression. Finally, generalizing our method to
3D scalar volumes is an interesting avenue to explore.
ACKNOWLEDGEMENTS
This project was co-financed by the research grant
PN-II-RU-TE-2011-3-2049 “Image-assisted diagno-
sis and prognosis of cutaneous melanocitary tumors”
offered by ANCS, Romania.
REFERENCES
Ahuja, N. and Chuang, J. (1997). Shape representation us-
ing a generalized potential field model. IEEE TPAMI,
19(2):169–176.
Bai, X. and Latecki, L. (2008). Path similarity skeleton
graph matching. IEEE TPAMI, 30(7):1282–1292.
Cao, T., Tang, K., Mohamed, A., and Tan, T. (2010). Paral-
lel banding algorithm to compute exact distance trans-
form with the GPU. In Proc. SIGGRAPH I3D Symp.,
pages 134–141.
Comaniciu, D. and Meer, P. (2002). Mean shift: A robust
approach toward feature space analysis. IEEE TPAMI,
24(5):603–619.
Cornea, N., Silver, D., Yuan, X., and Balasubramanian, R.
(2005). Computing hierarchical curve-skeletons of 3D
objects. Visual Comput., 21(11):945–955.
Costa, L. and Cesar, R. (2000). Shape analysis and classifi-
cation. CRC Press.
Foskey, M., Lin, M., and Manocha, D. (2003). Efficient
computation of a simplified medial axis. In Proc.
Shape Modeling, pages 135–142.
Hassouna, M. and Farag, A. (2009). Variational curve
skeletons using gradient vector flow. IEEE TPAMI,
31(12):2257–2274.
Hesselink, W. and Roerdink, J. (2008). Euclidean skele-
tons of digiral image and volume data in linear time
by the integer medial axis transform. IEEE TPAMI,
30(12):2204–2217.
Kass, M., Witkin, A., and Terzopoulos, D. (1988). Snakes:
Active contour models. IJCV, 1(4):321–331.
Li, C., Xu, C., Gui, C., and Fox, M. (2010). Distance regu-
larized level set evolution and its application to image
segmentation. IEEE TIP, 19(12):32433254.
Macrini, D., Siddiqi, K., and Dickinson, S. (2008). From
skeletons to bone graphs: Medial abstraction for ob-
ject recognition. In Proc. CVPR, pages 324–332.
Ogniewicz, R. L. and Kubler, O. (1995). Hierarchic voronoi
skeletons. Patt. Recog., (28):343– 359.
Palagyi, K. and Kuba, A. (1999). Directional 3D thinning
using 8 subiterations. In Proc. DGCI, volume 1568,
pages 325–336. Springer LNCS.
Papari, G., Petkov, N., and Campisi, P. (2007). Artistic
edge and corner preserving smoothing. IEEE TIP,
16(10):2449–2462.
Pudney, C. (1998). Distance-ordered homotopic thinning:
A skeletonization algorithm for 3D digital images.
CVIU, 72(3):404–413.
Reniers, D. and Telea, A. (2007). Tolerance-based fea-
ture transforms. In Advances in Comp. Graphics and
Comp. Vision (eds. J. Jorge et al.), pages 187–200.
Springer.
Rumpf, M. and Telea, A. (2002). A continuous skeletoniza-
tion method based on level sets. In Proc. VisSym,
pages 151–158.
Sethian, J. (2002). Level Set Methods and Fast Marching
Methods. Cambridge Univ. Press.
Shaked, D. and Bruckstein, A. (1998). Pruning medial axes.
CVIU, 69(2):156–169.
Shi, J. and Malik, J. (2000). Normalized cuts and image
segmentation. IEEE TPAMI, 22(8):888–905.
Siddiqi, K., Bouix, S., Tannenbaum, A., and Zucker, S.
(2002). Hamilton-Jacobi skeletons. IJCV, 48(3):215–
231.
Siddiqi, K. and Pizer, S. (2009). Medial Representations:
Mathematics, Algorithms and Applications. Springer.
Stolpner, S., Whitesides, S., and Siddiqi, K. (2009). Sam-
pled medial loci and boundary differential geometry.
In Proc. IEEE 3DIM, pages 87–95.
Strzodka, R. and Telea, A. (2004). Generalized distance
transforms and skeletons in graphics hardware. In
Proc. VisSym, pages 221–230.
Sud, A., Foskey, M., and Manocha, D. (2005). Homotopy-
preserving medial axis simplification. In Proc. SPM,
pages 103–110.
Sundar, H., Silver, D., Gagvani, N., and Dickinson, S.
(2003). Skeleton based shape matching and retrieval.
In Proc. SMI, pages 130–138.
Telea, A. (2012). Feature preserving smoothing of shapes
using saliency skeletons. Visualization in Medicine
and Life Sciences, pages 155–172.
Telea, A. and van Wijk, J. J. (2002). An augmented fast
marching method for computing skeletons and center-
lines. In Proc. VisSym, pages 251–259.
van Dortmont, M., van de Wetering, H., and Telea, A.
(2006). Skeletonization and distance transforms of
3D volumes using graphics hardware. In Proc. DGCI,
pages 617–629. Springer LNCS.
van Eede, M., Macrini, D., Telea, A., and Sminchisescu, C.
(2006). Canonical skeletons for shape matching. In
Proc. ICPR, pages 542–550.
Wan, M., Dachille, F., and Kaufman, A. (2001). Distance-
field based skeletons for virtual navigation. In Proc.
IEEE Visualization, pages 239–246.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: From error visibil-
ity to structural similarity. IEEE TIP, 13(4):600–612.
ADenseMedialDescriptorforImageAnalysis
293