RGB-D Tracking and Reconstruction for TV Broadcasts
Tommi Tykkälä, Hannu Hartikainen, Andrew I. Comport, Joni-Kristian Kämäräinen
2013
Abstract
In this work, a real-time image-based camera tracking solution is developed for television broadcasting studio environments. An affordable vision-based system is proposed which can compete with expensive matchmoving systems. The system requires merely commodity hardware: a low cost RGB-D sensor and a standard laptop. The main contribution is avoiding time-evolving drift by tracking relative to a pre-recorded keyframe model. Camera tracking is defined as a registration problem between the current RGB-D measurement and the nearest keyframe. The keyframe poses contain only a small error and therefore the proposed method is virtually driftless. Camera tracking precision is compared to KinectFusion, which is a recent method for simultaneous camera tracking and 3D reconstruction. The proposed method is tested in a television broadcasting studio, where it demonstrates driftless and precise camera tracking in real-time.
References
- Audras, C., Comport, A. I., Meilland, M., and Rives, P. (2011). Real-time dense rgb-d localisation and mapping. In Australian Conference on Robotics and Automation. Monash University, Australia, 2011.
- Baker, S. and Matthews, I. (2004). Lucas-kanade 20 years on: A unifying framework. Int. J. Comput. Vision, 56(3):221-255.
- Bouguet, J.-Y. (2010). Camera calibration toolbox for matlab. http://www.vision.caltech.edu/bouguetj/ calib doc.
- Comport, A., Malis, E., and Rives, P. (2007). rate quadri-focal tracking for robust 3d visual odometry. In IEEE Int. Conf. on Robotics and Automation, ICRA'07, Rome, Italy.
- Davison, A., Reid, I., Molton, N., and Stasse, O. (2007). MonoSLAM: Real-time single camera SLAM. PAMI, 29:1052-1067.
- Dobbert, T. (2005). Matchmoving: The Invisible Art of Camera Tracking. Sybex.
- Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2012). RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments. The International Journal of Robotics Research, 31(5):647-663.
- Herrera, C., Kannala, J., and Heikkila, J. (2012). Joint depth and color camera calibration with distortion correction. IEEE PAMI, 34(10).
- Kato, H. and Billinghurst, M. (1999). Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In Proceedings of the 2nd International Workshop on Augmented Reality (IWAR 99), San Francisco, USA.
- Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small ar workspaces. Proceedings of the International Symposium on In Mixed and Augmented Reality (ISMAR), pages 225-234.
- Ma, Y., Soatto, S., Kosecka, J., and Sastry, S. (2004). An invitation to 3-D vision: from images to geometric models, volume 26 of Interdisciplinary applied mathematics. Springer, New York.
- Newcombe, R., Lovegrove, S., and Davison, A. (2011a). Dtam: Dense tracking and mapping in real-time. In ICCV, volume 1.
- Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011b). Kinectfusion: Realtime dense surface mapping and tracking. ISMAR, pages 127-136.
- Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China.
- Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo tourism: Exploring photo collections in 3d. In ACM TRANSACTIONS ON GRAPHICS, pages 835-846. Press.
- Sturm, J., Magnenat, S., Engelhard, N., Pomerleau, F., Colas, F., Burgard, W., Cremers, D., and Siegwart, R. (2011). Towards a benchmark for rgb-d slam evaluation. In Proc. of the RGB-D Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science and Systems Conf. (RSS), Los Angeles, USA.
- Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (2000). Bundle adjustment - a modern synthesis. In Triggs, B., Zisserman, A., and Szeliski, R., editors, Vision Algorithms: Theory and Practice, volume 1883 of Lecture Notes in Computer Science, pages 298- 372. Springer-Verlag.
- Tykkala, T. M., Audras, C., and Comport, A. (2011). Direct iterative closest point for real-time visual odometry. In ICCV Workshop CVVT.
Paper Citation
in Harvard Style
Tykkälä T., Hartikainen H., Comport A. and Kämäräinen J. (2013). RGB-D Tracking and Reconstruction for TV Broadcasts . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-48-8, pages 247-252. DOI: 10.5220/0004279602470252
in Bibtex Style
@conference{visapp13,
author={Tommi Tykkälä and Hannu Hartikainen and Andrew I. Comport and Joni-Kristian Kämäräinen},
title={RGB-D Tracking and Reconstruction for TV Broadcasts},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={247-252},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004279602470252},
isbn={978-989-8565-48-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2013)
TI - RGB-D Tracking and Reconstruction for TV Broadcasts
SN - 978-989-8565-48-8
AU - Tykkälä T.
AU - Hartikainen H.
AU - Comport A.
AU - Kämäräinen J.
PY - 2013
SP - 247
EP - 252
DO - 10.5220/0004279602470252