Cruz-Mat´ıas, I. and Ayala, D. (2011). CUDB: An im-
proved decomposition model for orthogonal pseudo-
polyhedra. Technical Report LSI-11-2-T, UPC.
Cruz-Mat´ıas, I. and Ayala, D. (2012). Orthogonal simplifi-
cation of objects represented by the extreme vertices
model. In Proceedings of the GRAPP 2012, pages
193–196, Rome, Italy. INSTICC Press.
Dillencourt, M., Samet, H., and Tamminen, M. (1992).
A general approach to connected-component labeling
for arbitrary image representations. Journal of the
ACM, 39(2):253 – 280.
Grevera, G. J., Udupa, J. K., and Odhner, D. (2000). An
order of magnitude faster isosurface rendering in soft-
ware on a PC than using dedicated, GP rendering
hardware. IEEE Trans. Vis. and CG., 6(4):335–345.
Grisan, E., Foracchia, M., and Ruggeri, A. (2003). A novel
method for the automatic evaluation of retinal vessel
tortuosity. In Proc. of the 25th Annual Int. Conf. of the
IEEE EMBS, 2003., volume 1, pages 866 – 869 Vol.1.
Khachan, M., Chenin, P., and Deddi, H. (2000). Polyhedral
representation and adjacency graph in n-dimensional
digital images. Computer Vision and Image under-
standing, 79:428 – 441.
Kim, B., Seo, J., and Shin, Y. (2001). Binary volume render-
ing using Slice-based Binary Shell. The Visual Com-
puter, 17:243 – 257.
Kong, T. and Rosenfeld, A. (1989). Digital topology: Intro-
duction and survey. Computer Vision, Graphics and
Image Processing, 48:357–393.
Konkle, S., Moran, P., Hamann, B., and Joy, K. (2003). Fast
methods for computing isosurface topology with Betti
numbers. In Data Visualization, pages 363 – 376.
Lachaud, J. and Montanvert, A. (2000). Continuous analogs
of digital boundaries: A topological approach to iso-
surfaces. Graphical Models, 62:129 – 164.
Latecki, L. (1997). 3D Well-Composed Pictures. Graphical
Models and Image Processing, 59(3):164–172.
Latecki, L., Eckhardt, U., and Rosenfeld, A. (1995). Well-
composed sets. Computer Vision and Image Under-
standing, 61(1):70–83.
Mantyla, M. (1988). An Introduction to Solid Modeling.
Computer Science Press.
Mart´ın-Badosa, E., Elmoutaouakkil, A., Nuzzo, S., Am-
blard, D., Vico, L., and Peyrin, F. (2003). A method
for the automatic characterization of bone architecture
in 3D mice microtomographic images. Computerized
Medical Imaging and Graphics, 27:447–458.
Massey, W. S. (1991). A Basic Course in Algebraic Topol-
ogy. Springer-Verlag.
Odgaard, A. and Gundersen, H. J. (1993). Quantification of
Connectivity in Cancellous Bone, with Special Em-
phasis on 3-D Reconstructions. Bone, 14:173 – 182.
Rodr´ıguez, J., Cruz, I., Verg´es, E., and Ayala, D. (2011). A
connected-component-labeling-based approach to vir-
tual porosimetry. Graphical Models, 73:296–310.
Samet, H. (1990). Applications of spatial data struc-
tures: Computer graphics, image processing, and
GIS. Addison-Wesley Longman Publishing Co., Inc.
Schaefer, S., Ju, T., and Warren, J. (2007). Manifold dual
contouring. IEEE Transactions on Visualization and
Computer Graphics, 13(3):610 – 619.
Toriwaki, J. and Yonekura, T. (2002). Euler number and
connectivity indexes of a three dimensional digital
picture. Forma, 17:183–209.
Vanderhyde, J. and Szymczak, A. (2008). Topological sim-
plification of isosurfaces in volume data using octrees.
Graphical Models, 70:16 – 31.
Vogel, H. J., T¨olke, J., Schulz, V., Krafczyk, M., and Roth,
K. (2005). Comparison of a lattice-boltzmann model,
a full-morphology model, and a pore network model
for determining capillary pressure-saturation relation-
ships. Vadose Zone Journal, 4:380 –388.
Wu, K., Otoo, E., and Suzuki, K. (2009). Optimizing two-
pass connected-component labeling algorithms. Pat-
tern Anal. Appl., 12(2):117–135.
GRAPP2013-InternationalConferenceonComputerGraphicsTheoryandApplications
26