Daugman, J. (1993). High confidence visual recognition of
persons by a test of statistical independence. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 15(11):1148 –1161.
Daugman, J. (2006). Probing the uniqueness and random-
ness of iriscodes: Results from 200 billion iris pair
comparisons. Proceedings of the IEEE, 94(11):1927–
1935.
Daugman, J. (2007). New methods in iris recognition. IEEE
Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics,, 37(5):1167 –1175.
He, Z., Tan, T., Sun, Z., and Qiu, X. (2009). Toward ac-
curate and fast iris segmentation for iris biometrics.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(9):1670 –1684.
Jain, A., Hong, L., and Pankanti, S. (2000). Biometric iden-
tification. Communications of the ACM, 43(2):90–98.
Kobatake, H. and Hashimoto, S. (1999). Convergence index
filter for vector fields. IEEE Transactions on Image
Processing, 8(8):1029–1038.
Ma, L., Tan, T., Wang, Y., and Zhang, D. (2004). Local in-
tensity variation analysis for iris recognition. Pattern
Recognition, 37(6):1287 – 1298.
Masek, L. (2003). Recognition of Human Iris Patterns for
Biometric Identification. Towards Non-cooperative
Biometric Iris Recognition. PhD thesis.
Nabti, M. and Bouridane, A. (2008). An effective and fast
iris recognition system based on a combined multi-
scale feature extraction technique. Pattern Recogni-
tion, 43(3):868 – 879.
Oliveira, H., Cardoso, J., Magalhaes, A., and Cardoso, M.
(2012). Simultaneous detection of prominent points
on breast cancer conservative treatment images. In
Proceedings of the 19th IEEE International Confer-
ence on Image Processing, pages 2841–2844.
Pawar, M., Lokande, S., and Bapat, V. (2012). Iris segmen-
tation using geodesic active contour for improved tex-
ture extraction in recognition. International Journal
of Computer Applications, 47(16):448–456.
Proenc¸a, H., Filipe, S., Santos, R., Oliveira, J., and Alexan-
dre, L. A. (2010). The ubiris.v2: A database of visi-
ble wavelength iris images captured on-the-move and
at-a-distance. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 32(8):1529 –1535.
Radman, A., Jumari, K., and Zainal, N. (2012). Iris seg-
mentation in visible wavelength environment. Proce-
dia Engineering, 41:743–748.
Ross, A. (2010). Iris recognition: The path forward. Com-
puter, 43(2):30–35.
Sanchez-Avila, C., Sanchez-Reillo, R., and de Martin-
Roche, D. (2002). Iris-based biometric recognition
using dyadic wavelet transform. Aerospace and Elec-
tronic Systems Magazine, IEEE, 17(10):3 – 6.
Sankowski, W., Grabowski, K., Napieralska, M., Zubert,
M., and Napieralski, A. (2010). Reliable algorithm
for iris segmentation in eye image. Image and Vision
Computing, 28(2):231–237.
Shah, S. and Ross, A. (2009). Iris segmentation using
geodesic active contours. IEEE Transactions on In-
formation Forensics and Security,, 4(4):824 –836.
Tan, C. and Kumar, A. (2012). Unified framework for
automated iris segmentation using distantly acquired
face images. IEEE Transactions on Image Process-
ing, 21(9):4068–4079.
Tan, T., He, Z., and Sun, Z. (2010). Efficient and robust seg-
mentation of noisy iris images for non-cooperative iris
recognition. Image and Vision Computing, 28(2):223
– 230.
Vatsa, M., Singh, R., and Noore, A. (2008). Improving iris
recognition performance using segmentation, quality
enhancement, match score fusion, and indexing. IEEE
Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics,, 38(4):1021 –1035.
Wildes, R. (1997). Iris recognition: an emerging biometric
technology. Proceedings of the IEEE, 85(9):1348 –
1363.
Zuo, J. and Schmid, N. (2010). On a methodology for robust
segmentation of nonideal iris images. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cy-
bernetics,, 40(3):703 –718.
VISAPP2013-InternationalConferenceonComputerVisionTheoryandApplications
190