Depth-Assisted Rectification of Patches - Using RGB-D Consumer Devices to Improve Real-time Keypoint Matching
João Paulo Lima, Francisco Simões, Hideaki Uchiyama, Veronica Teichrieb, Eric Marchand
2013
Abstract
This paper presents a method named Depth-Assisted Rectification of Patches (DARP), which exploits depth information available in RGB-D consumer devices to improve keypoint matching of perspectively distorted images. This is achieved by generating a projective rectification of a patch around the keypoint, which is normalized with respect to perspective distortions and scale. The DARP method runs in real-time and can be used with any local feature detector and descriptor. Evaluations with planar and non-planar scenes show that DARP can obtain better results than existing keypoint matching approaches in oblique poses.
References
- Berkmann, J., Caelli, T., 1994. Computation of surface geometry and segmentation using covariance techniques. In IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 16, issue 11, pages 1114-1116.
- Del Bimbo, A., Franco, F., Pernici, F., 2010. Local homography estimation using keypoint descriptors. In WIAMIS'10, 11th International Workshop on Image Analysis for Multimedia Interactive Services, 4 pages.
- Eyjolfsdottir, E., Turk., M., 2011. Multisensory embedded pose estimation. In WACV'11, IEEE Workshop on Applications of Computer Vision, pages 23-30.
- Hinterstoisser, S., Benhimane, S., Navab, N., Fua, P., Lepetit, V., 2008. Online learning of patch perspective rectification for efficient object detection. In CVPR'08, 21th IEEE Conference on Computer Vision and Pattern Recognition, 8 pages.
- Hinterstoisser, S., Kutter, O., Navab, N., Fua, P., Lepetit, V., 2009. Real-time learning of accurate patch rectification. In CVPR'09, 22th IEEE Conference on Computer Vision and Pattern Recognition, pages 2945-2952.
- Koser, K., Koch, R., 2007. Perspectively invariant normal features. In ICCV'07, 11th IEEE International Conference on Computer Vision, 8 pages.
- Kurz, D., Benhimane, S., 2011. Gravity-aware handheld augmented reality. In ISMAR'11, 10th IEEE International Symposium on Mixed and Augmented Reality, pages 111-120.
- Lai, K., Bo, L., Ren, X., Fox, D., 2011. A large-scale hierarchical multi-view RGB-D object dataset. In ICRA'11, IEEE International Conference on Robotics and Automation, pages 1817-1824.
- Marcon, M., Frigerio, E., Sarti, A., Tubaro, S., 2012. 3D wide baseline correspondences using depth-maps. In Signal Processing: Image Communication, volume 27, issue 8, pages 849-855.
- Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L., 2005. A comparison of affine region detectors. In International Journal of Computer Vision, volume 5, issue 1-2, pages 43-72.
- Morel, J., Yu, G., 2009. ASIFT: A new framework for fully affine invariant image comparison. In SIAM Journal on Imaging Sciences, volume 2, issue 2, pages 438-469.
- Moreno-Noguer, F., Lepetit, V., Fua, P., 2007. Accurate non-iterative O(n) solution to the PnP problem. In ICCV'07, 11th IEEE International Conference on Computer Vision, 8 pages.
- Pagani, A., Stricker, D., 2009. Learning local patch orientation with a cascade of sparse regressors. In BMVC'09, 20th British Machine Vision Conference, pages 86.1-86.11.
- Rosten, E., Drummond, T., 2006. Machine learning for high-speed corner detection. In ECCV'06, 9th European Conference on Computer Vision, pages 430-443.
- Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. ORB: an efficient alternative to SIFT or SURF. In ICCV'11, 15th IEEE International Conference on Computer Vision, pages 2564-2571.
- Wu, C., Clipp, B., Li, X., Frahm, J.-M., Pollefeys, M., 2008. 3D model matching with viewpoint invariant patches (VIPs). In CVPR'08, IEEE Conference on Computer Vision and Pattern Recognition, 8 pages.
- Yang, M., Cao, Y., Förstner, W., McDonald, J., 2010. Robust wide baseline scene alignment based on 3d viewpoint normalization. In ISVC'10, 6th International Symposium on Visual Computing, Lecture Notes in Computer Science, volume 6453, pages 654-665.
Paper Citation
in Harvard Style
Lima J., Simões F., Uchiyama H., Teichrieb V. and Marchand E. (2013). Depth-Assisted Rectification of Patches - Using RGB-D Consumer Devices to Improve Real-time Keypoint Matching . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-47-1, pages 651-656. DOI: 10.5220/0004284406510656
in Bibtex Style
@conference{visapp13,
author={João Paulo Lima and Francisco Simões and Hideaki Uchiyama and Veronica Teichrieb and Eric Marchand},
title={Depth-Assisted Rectification of Patches - Using RGB-D Consumer Devices to Improve Real-time Keypoint Matching},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={651-656},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004284406510656},
isbn={978-989-8565-47-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)
TI - Depth-Assisted Rectification of Patches - Using RGB-D Consumer Devices to Improve Real-time Keypoint Matching
SN - 978-989-8565-47-1
AU - Lima J.
AU - Simões F.
AU - Uchiyama H.
AU - Teichrieb V.
AU - Marchand E.
PY - 2013
SP - 651
EP - 656
DO - 10.5220/0004284406510656