Cage-free Spatial Deformations
M. Àngels Cerveró, Àlvar Vinacua, Pere Brunet
2013
Abstract
We propose a new deformation scheme for polygonal meshes through generalized barycentric coordinates that does not require any explicit cage definition. Our system infers the connectivity of the control points defined by the user and computes the coordinates using this structure. This allows the user to incrementally position the control points (or delete them) wherever he considers more suitable. This freedom gives more control, precision and locality to the deformation process.
References
- Floater, M. S. (2003). Mean value coordinates. Computer Aided Geometric Design, 20(1):19-27.
- Floater, M. S., Hormann, K., and Ks, G. (2006). A general construction of barycentric coordinates over convex polygons. In Advances in Computational Mathematics, pages 311-331.
- Floater, M. S., K ós, G., and Reimers, M. (2005). Mean value coordinates in 3d. Comput. Aided Geom. Des., 22(7):623-631.
- Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. (2007). Harmonic coordinates for character articulation. ACM Trans. Graph., 26(3):71.
- Ju, T., Schaefer, S., and Warren, J. (2005). Mean value coordinates for closed triangular meshes. ACM Trans. Graph., 24(3):561-566.
- Li, Z., Levin, D., Deng, Z., Liu, D., and Luo, X. (2010). Cage-free local deformations using green coordinates. Vis. Comput., 26(6-8):1027-1036.
- Lipman, Y., Kopf, J., Cohen-Or, D., and Levin, D. (2007). Gpu-assisted positive mean value coordinates for mesh deformations. In Proceedings of the fifth Eurographics symposium on Geometry processing, SGP 7807, pages 117-123, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
- Lipman, Y., Levin, D., and Cohen-Or, D. (2008). Green coordinates. ACM Trans. Graph., 27(3):1-10.
- Mbius, A. F. (1827). Der Barycentrische Calcul. Johann Ambrosius Barth, Leipzig.
- Meyer, M., Barr, A., Lee, H., and Desbrun, M. (2002). Generalized barycentric coordinates on irregular polygons. J. Graph. Tools, 7(1):13-22.
- Wachspress, E. L. (1975). A Rational Finite Element Basis. Academic Press, New York.
Paper Citation
in Harvard Style
Cerveró M., Vinacua À. and Brunet P. (2013). Cage-free Spatial Deformations . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013) ISBN 978-989-8565-46-4, pages 111-114. DOI: 10.5220/0004285201110114
in Bibtex Style
@conference{grapp13,
author={M. Àngels Cerveró and Àlvar Vinacua and Pere Brunet},
title={Cage-free Spatial Deformations},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013)},
year={2013},
pages={111-114},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004285201110114},
isbn={978-989-8565-46-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2013)
TI - Cage-free Spatial Deformations
SN - 978-989-8565-46-4
AU - Cerveró M.
AU - Vinacua À.
AU - Brunet P.
PY - 2013
SP - 111
EP - 114
DO - 10.5220/0004285201110114