REFERENCES
Anguelov, D., Koller, D., Pang, H.-C., Srinivasan, P., and
Thrun, S. (2004). Recovering articulated object mod-
els from 3d range data. In 20th Conf. on Uncertainty
in Artificial Intelligence, UAI ’04, pages 18–26.
Ban
´
egas, F., Jaeger, M., Michelucci, D., and Roelens, M.
(2001). The ellipsoidal skeleton in medical applica-
tions. In Sixth ACM Symp. on Solid Modeling and
Appl., SMA ’01, pages 30–38.
Caillette, F. (2006). Real-Time Markerless 3D Human Body
Tracking. Phd thesis, University of Manchester.
Canton-Ferrer, C., Casas, J., and Pardas, M. (2009). Voxel
based annealed particle filtering for markerless 3d ar-
ticulated motion capture. In 3DTV Conf.: The True Vi-
sion - Capture, Transmission and Display of 3D Video,
2009, pages 1 –4.
Cipolla, R., Stenger, B., Thayananthan, A., and Torr, P.
(2003). Hand tracking using a quadric surface model
and bayesian filtering. In Mathematics of Surfaces,
volume 2768 of LNCS, pages 129–141. Springer.
Darby, J., Li, B., and Costen, N. (2008). Behaviour based
particle filtering for human articulated motion track-
ing. In ICPR, 2008, pages 1–4.
de Aguiar, E., Theobalt, C., Magnor, M., Theisel, H., and
Seidel, H.-P. (2004). M3: marker-free model recon-
struction and motion tracking from 3d voxel data. In
Pacific Graphics, 2004, pages 101–110.
de Aguiar, E., Theobalt, C., and Seidel, H.-P. (2006). Auto-
matic learning of articulated skeletons from 3d marker
trajectories. In Second Int. Conf. on Advances in Vi-
sual Computing, ISVC’06, pages 485–494.
de Aguiar, E., Theobalt, C., Thrun, S., and Seidel, H.-P.
(2008). Automatic conversion of mesh animations
into skeleton-based animations. Computer Graphics
Forum, 27(2):389–397.
Fossati, A., Salzmann, M., and Fua, P. (2009). Observable
subspaces for 3d human motion recovery. In CVPR,
2009, pages 1137–1144.
Franco, J.-S. and Boyer, E. (2005). Fusion of multiview
silhouette cues using a space occupancy grid. In ICCV,
2005, pages 1747–1753.
Gall, J., Rosenhahn, B., Brox, T., and Seidel, H.-P. (2010).
Optimization and filtering for human motion capture.
Int. J. of Computer Vision, 87:75–92.
Hasler, N., Rosenhahn, B., Thormahlen, T., Wand, M., Gall,
J., and Seidel, H.-P. (2009). Markerless motion cap-
ture with unsynchronized moving cameras. In CVPR,
2009, pages 224–231.
Huang, P., Hilton, A., and Starck, J. (2009). Human motion
synthesis from 3d video. In CVPR, 2009, pages 1478–
1485.
Inria (2012). 4d repository. Perception Group, Inria Rh
ˆ
one-
Alpes. http://4drepository.inrialpes.fr.
Isard, M. (2003). Pampas: real-valued graphical models for
computer vision. In CVPR, 2003, pages 613–620.
James, D. L. and Twigg, C. D. (2005). Skinning mesh ani-
mations. ACM Trans. Graph., 24(3):399–407.
Mian, A., Bennamoun, M., and Owens, R. (2006). Three-
dimensional model-based object recognition and seg-
mentation in cluttered scenes. IEEE Trans. Pattern
Anal. Machine Intell., 28(10):1584 –1601.
Miki
´
c, I., Trivedi, M., Hunter, E., and Cosman, P. (2003).
Human body model acquisition and tracking using
voxel data. Int. J. of Computer Vision, 53:199–223.
Ross, D., Lim, J., Lin, R.-S., and Yang, M.-H. (2008). In-
cremental learning for robust visual tracking. Int. J. of
Computer Vision, 77:125–141.
Ross, D., Tarlow, D., and Zemel, R. (2010). Learning ar-
ticulated structure and motion. Int. J. of Computer
Vision, 88:214–237.
Schaefer, S. and Yuksel, C. (2007). Example-based skeleton
extraction. In Fifth Eurographics Symp. on Geometry
Processing, SGP ’07, pages 153–162.
Sigal, L. and Black, M. (2010). Guest editorial: State of the
art in image- and video-based human pose and motion
estimation. Int. J. of Computer Vision, 87:1–3.
Sigal, L., Isard, M., Sigelman, B. H., and Black, M. J.
(2003). Attractive people: Assembling loose-limbed
models using non-parametric belief propagation. In
NIPS, 2003, pages 1539–1546.
Song, Y., Goncalves, L., and Perona, P. (2003). Unsuper-
vised learning of human motion. IEEE Trans. Pattern
Anal. Machine Intell., 25(7):814 – 827.
Starck, J. and Hilton, A. (2003). Model-based multiple view
reconstruction of people. In ICCV, 2003, pages 915–
922.
Starck, J. and Hilton, A. (2007). Surface capture for
performance-based animation. IEEE Comput. Graph.
Appl., 27:21–31.
Sudderth, E., Ihler, A., Freeman, W., and Willsky, A.
(2003). Nonparametric belief propagation. In CVPR,
2003., pages 605–612.
Sudderth, E. B., Ihler, A. T., Isard, M., Freeman, W. T., and
Willsky, A. S. (2010). Nonparametric belief propaga-
tion. Commun. ACM, 53(10):95–103.
Sundaresan, A. and Chellappa, R. (2009). Multicamera
tracking of articulated human motion using shape and
motion cues. IEEE Trans. on Image Processing,
18(9):2114 –2126.
Theobalt, C., de Aguiar, E., Magnor, M. A., Theisel, H.,
and Seidel, H.-P. (2004). Marker-free kinematic skele-
ton estimation from sequences of volume data. In
ACM Symp. on Virtual Reality Software and Technol-
ogy, 2004, VRST ’04, pages 57–64. ACM.
Toshev, A., Makadia, A., and Daniilidis, K. (2009). Shape-
based object recognition in videos using 3d synthetic
object models. In CVPR, 2009, pages 288 –295.
Ukita, N., Hirai, M., and Kidode, M. (2009). Complex vol-
ume and pose tracking with probabilistic dynamical
models and visual hull constraints. In ICCV, 2009,
pages 1405 –1412.
3DRepresentationModelsConstructionthroughaVolumeGeometricDecompositionMethod
279