on challenging video sequences and achieves state-
of-the-art performance (See Table 2). These results
show that SMR is a superior approach.
REFERENCES
Avidan, S. (2007). Ensemble tracking. Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on,
29(2):261–271.
Babenko, B., Yang, M., and Belongie, S. (2009). Vi-
sual tracking with online multiple instance learning.
In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 983–990.
IEEE.
Black, M. and Jepson, A. (1998). Eigentracking: Robust
matching and tracking of articulated objects using a
view-based representation. International Journal of
Computer Vision, 26(1):63–84.
Blaser, E., Pylyshyn, Z., Holcombe, A., et al. (2000).
Tracking an object through feature space. Nature,
408(6809):196–198.
Collins, R., Liu, Y., and Leordeanu, M. (2005). Online se-
lection of discriminative tracking features. Pattern
Analysis and Machine Intelligence, IEEE Transac-
tions on, 27(10):1631–1643.
Comaniciu, D., Ramesh, V., and Meer, P. (2003). Kernel-
based object tracking. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 25(5):564–577.
DiCarlo, J., Zoccolan, D., and Rust, N. (2012). How does
the brain solve visual object recognition? Neuron,
73(3):415–434.
Hager, G. and Belhumeur, P. (1998). Efficient region track-
ing with parametric models of geometry and illumina-
tion. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 20(10):1025–1039.
Ishikawa, T., Matthews, I., and Baker, S. (2002). Efficient
image alignment with outlier rejection. Citeseer.
Kalal, Z., Matas, J., and Mikolajczyk, K. (2010a). P-N
Learning: Bootstrapping Binary Classifiers by Struc-
tural Constraints. Conference on Computer Vision and
Pattern Recognition.
Kalal, Z., Mikolajczyk, K., and Matas, J. (2010b). Forward-
backward error: Automatic detection of tracking fail-
ures. In Pattern Recognition (ICPR), 2010 20th Inter-
national Conference on, pages 2756–2759. IEEE.
LeCun, Y., Huang, F., and Bottou, L. (2004). Learning
methods for generic object recognition with invari-
ance to pose and lighting. In Computer Vision and
Pattern Recognition, 2004. CVPR 2004. Proceedings
of the 2004 IEEE Computer Society Conference on,
volume 2, pages II–97. IEEE.
Lim, J., Ross, D., Lin, R., and Yang, M. (2004). Incremen-
tal learning for visual tracking. Advances in neural
information processing systems, 17:793–800.
Lucas, B. and Kanade, T. (1981). An iterative image regis-
tration technique with an application to stereo vision.
In Proceedings of the 7th international joint confer-
ence on Artificial intelligence.
Sermanet, P., Kavukcuoglu, K., and LeCun, Y. (2011).
Traffic signs and pedestrians vision with multi-scale
convolutional networks. Snowbird Machine Learning
Workshop.
Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., and Pog-
gio, T. (2007). Robust object recognition with cortex-
like mechanisms. IEEE Trans. Pattern Anal. Mach.
Intell., 29:411–426.
Shi, J. and Tomasi, C. (1994). Good features to track.
In Computer Vision and Pattern Recognition, 1994.
Proceedings CVPR’94., 1994 IEEE Computer Society
Conference on, pages 593–600. IEEE.
Thorpe, S., Fize, D., Marlot, C., et al. (1996). Speed
of processing in the human visual system. nature,
381(6582):520–522.
Vintch, B., Movshon, J. A., and Simoncelli, E. P. (2010).
Characterizing receptive field structure of macaque v2
neurons in terms of their v1 afferents. Annual meeting
in Neuroscience.
Wilmer, J. and Nakayama, K. (2007). Two distinct visual
motion mechanisms for smooth pursuit: Evidence
from individual differences. Neuron, 54(6):987–1000.
Yilmaz, A., Javed, O., and Shah, M. (2006). Object track-
ing: A survey. Acm Computing Surveys (CSUR),
38(4):13.
VisualTrackingwithSimilarityMatchingRatio
285