REFERENCES
Aiken, A. (1997). Moss (measure of software similarity).
http://cs.stanford.edu/ aiken/moss/.
Arisholm, E., Briand, L. C., and Fuglerud, M. (2007). Data
mining techniques for building fault-proneness mod-
els in telecom java software. In Software Reliability,
2007. ISSRE ’07. The 18th IEEE International Sym-
posium on.
Boetticher, G., Menzies, T., and Ostrand, T. (2007).
Promise repository of empirical software engineering
data http://promisedata.org/ repository, west virginia
university, department of computer science.
Boetticher, G. D. (2005). Nearest neighbor sampling for
better defect prediction. In Proceedings of the 2005
workshop on Predictor models in software engineer-
ing, PROMISE ’05.
Cortes, C. and Vapnik, V. (1995). Support-vector
networks. Machine Learning, 20:273–297.
10.1007/BF00994018.
Dem
ˇ
sar, J. (2006). Statistical comparisons of classifiers
over multiple data sets. Journal of Machine Learning
Research, pages 1–30.
Elish, K. O. and Elish, M. O. (2008). Predicting defect-
prone software modules using support vector ma-
chines. Journal of Systems and Software, 81.
Gondra, I. (2008). Applying machine learning to software
fault-proneness prediction. Journal of Systems and
Software, 81(2):186–195.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reute-
mann, P., and Witten, I. H. (2009). The WEKA data
mining software: an update. SIGKDD Explorations,
11(1):10–18.
Halstead, M. H. (1977). Elements of Software Science (Op-
erating and programming systems series). Elsevier
Science Inc., New York, NY, USA.
Hu, Y., Zhang, X., Sun, X., Liu, M., and Du, J. (2009). An
intelligent model for software project risk prediction.
In International Conference on Information Manage-
ment, Innovation Management and Industrial Engi-
neering, 2009, volume 1, pages 629 –632.
Kaur, A. and Malhotra, R. (2008). Application of random
forest in predicting fault-prone classes. In Advanced
Computer Theory and Engineering, 2008. ICACTE
’08. International Conference on.
Kaur, A., Sandhu, P., and Bra, A. (2009). Early software
fault prediction using real time defect data. In Ma-
chine Vision, 2009. ICMV ’09. Second International
Conference on, pages 242 –245.
Lessmann, S., Baesens, B., Mues, C., and Pietsch, S.
(2008). Benchmarking classification models for soft-
ware defect prediction: A proposed framework and
novel findings. IEEE Transactions on Software Engi-
neering, 34:485–496.
McCabe, T. (1976). A complexity measure. IEEE Transac-
tions on Software Engineering, 2:308–320.
Menzies, T., Greenwald, J., and Frank, A. (2007). Data
mining static code attributes to learn defect predictors.
IEEE Transactions on Software Engineering, 33:2–
13.
Munson, J. C. and Khoshgoftaar, T. M. (1992). The detec-
tion of fault-prone programs. IEEE Trans. Softw. Eng.,
18:423–433.
Pai, G. and Dugan, J. (2007). Empirical analysis of soft-
ware fault content and fault proneness using bayesian
methods. IEEE Transactions on Software Engineer-
ing, 33(10):675–686.
Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Compari-
son and evaluation of code clone detection techniques
and tools: A qualitative approach. Science of Com-
puter Programming.
Schleimer, S., Wilkerson, D. S., and Aiken, A. (2003). Win-
nowing: local algorithms for document fingerprinting.
In Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, SIGMOD
’03, New York, NY, USA. ACM.
Shin, M., Ratanothayanon, S., Goel, A. L., and Paul, R. A.
(2007). Parsimonious classifiers for software quality
assessment. IEEE International Symposium on High-
Assurance Systems Engineering, pages 411–412.
Wu, G., Chang, E. Y., and Zhang, Z. (2005). An analysis
of transformation on non-positive semidefinite simi-
larity matrix for kernel machines. In Proceedings of
the 22nd International Conference on Machine Learn-
ing.
Xing, F., Guo, P., and Lyu, M. (2005). A novel method
for early software quality prediction based on support
vector machine. In International Symposium on Soft-
ware Reliability Engineering.
Zimmermann, T. and Nagappan, N. (2009). Predicting de-
fects with program dependencies. International Sym-
posium on Empirical Software Engineering and Mea-
surement, pages 435–438.
ANovelRegressionMethodforSoftwareDefectPredictionwithKernelMethods
221