we can estimate the elasticity matrices in the coarse
levels through a sampling approach, we believe that
we can also compute the viscosity constants in a sim-
ilar way.
REFERENCES
Baraff, D. and Witkin, A. (1998). Large steps in cloth sim-
ulation. In ACM SIGGRAPH 1998 Conference Pro-
ceedings, pages 43–54.
Capell, S., Green, S., Curless, B., Duchamp, T., and
Popovi´c, Z. (2002). A multiresolution framework for
dynamic deformations. In Proceedings of the 2002
ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, pages 41–47.
Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L., Hauser,
K. K., Goldberg, K., Shewchuk, J. R., and O’Brien,
J. F. (2009). Interactive simulation of surgical needle
insertion and steering. ACM Transactions on Graph-
ics, 28(3):88:1–88:10.
Debunne, G., Desbrun, M., Cani, M.-P., and Barr, A. H.
(2001). Dynamic real-time deformations using space
& time adaptive sampling. In ACM SIGGRAPH 2001
Conference Proceedings, pages 31–36.
Dequidt, J., Marchal, D., and Grisoni, L. (2005). Time-
critical animation of deformable solids. Computer An-
imation and Virtual Worlds, 16(3-4):177–187.
Faure, F., Gilles, B., Bousquet, G., and Pai, D. (2011).
Sparse meshless models of complex deformable
solids. ACM Transactions on Graphics, 30(4):73:1–
73:10.
Gibson, S. F. F. and Mirtich, B. (1997). A survey of de-
formable modeling in computer graphics. Technical
Report TR97-19, Mitsubishi Electric Research Labo-
ratories.
Grinspun, E., Krysl, P., and Schr¨oder, P. (2002). CHARMS:
a simple framework for adaptive simulation. ACM
Transactions on Graphics, 21(3):281–290.
Hoppe, H. (1996). Progressive meshes. In ACM SIG-
GRAPH 1996 Conference Proceedings, pages 99–
108.
Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M.
(2009). Numerical coarsening of inhomogeneous
elastic materials. ACM Transactions on Graphics,
28(51):51:1–51:8.
Lee, Y., Terzopoulos, D., and Waters, K. (1995). Realistic
modeling for facial animation. In ACM SIGGRAPH
1995 Conference Proceedings, pages 55–62.
Liu, A. and Joe, B. (1995). Quality local refinement of tetra-
hedral meshes based on 8-subtetrahedron subdivision.
SIAM Journal on Scientific Computing, 16(6):1269–
1291.
M¨uller, M., McMillan, L., Dorsey, J., and Jagnow, R.
(2001). Real-time simulation of deformation and frac-
ture of stiff materials. In Proceedings of the 2001
Eurographic Workshop on Computer Animation and
Simulation, pages 113–124.
Nealen, A., Muller, M., Keiser, R., Boxerman, E., and Carl-
son, M. (2006). Physically based deformable mod-
els in computer graphics. Computer Graphics Forum,
25(4):809–836.
Nesme, M., Kry, P. G., Jeˇr´abkov´a, L., and Faure, F. (2009).
Preserving topology and elasticity for embedded de-
formable models. ACM Transactions on Graphics,
28(3):52:1–52:9.
O’Brien, J. F. and Hodgins, J. K. (1999). Graphical model-
ing and animation of brittle fracture. In ACM SIG-
GRAPH 1999 Conference Proceedings, pages 137–
146.
Schaefer, S., Hakenberg, J., and Warren, J. (2004). Smooth
subdivision of tetrahedral meshes. In Proceedings of
the 2004 Eurographics/ACM SIGGRAPH Symposium
on Geometry processing, pages 147–154.
Shewchuk, J. R. (1998). Tetrahedral mesh generation by
Delaunay refinement. In Proceedings of the 14th An-
nual Symposium on Computational Geometry, pages
86–95.
Tu, X. and Terzopoulos, D. (1994). Artificial fishes:
physics, locomotion, perception, behavior. In ACM
SIGGRAPH 1994 Conference Proceedings, pages 43–
50.
Zienkiewicz, O., Taylor, R., Taylor, R., and Zhu, J. (2005).
The finite element method: its basis and fundamentals.
The Finite Element Method. Elsevier Butterworth-
Heinemann.
GRAPP2013-InternationalConferenceonComputerGraphicsTheoryandApplications
244