Real-time Intelligent Clustering for Graph Visualization
Lionel Martin, Géraldine Bous
2013
Abstract
We present a tool for the interactive exploration and analysis of large clustered graphs. The tool empowers users to control the granularity of the graph, either by direct interaction (collapsing/expanding clusters) or via a slider that automatically computes a clustered graph of the desired size. Moreover, we explore the use of learning algorithms to capture graph exploration preferences based on a history of user interactions. The learned parameters are then used to modify the action of the slider in view of mimicking the natural interaction/exploration behavior of the user.
References
- Aleskerov, F., Bouyssou, D., and Monjardet, B. (2007). Utility Maximization, Choice and Preference. Springer, Berlin.
- Archanbault, D., Munzner, T., and Auber, D. (2002). Tuggraph: path-preserving hierarchies for browsing proximity and paths in graphs. In Proceedings of IEEE Pacific Visualization Symposium, page 113120.
- Archanbault, D., Munzner, T., and Auber, D. (2008). Grouseflocks: Steerable exploration of graph hierarchy space. IEEE Transactions on Visualization and Computer Graphics, 14:900913.
- Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008:P10008.
- Bous, G., Fortemps, P., Glineur, F., and Pirlot, M. (2010). ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements. European Journal of Operational Research, 206:435-444.
- Card, S., MacKinlay, J., and Schneiderman, B. (1999). Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, Burlington.
- Duch, J. and Arenas, A. (2005). Community detection in complex networks using extremal optimization. Physical Review E, 72:027104.
- Elmqvist, N., Do, T.-N., Goodell, H., Henry, N., and Fekete, J.-D. (2008). Zame: Interactive large-scale graph visualization. In Proceedings of the IEEE Pacific Visualization Symposium, pages 215 -222.
- Elmqvist, N. and Fekete, J.-D. (2010). Hierarchical aggregation for information visualization: Overview, techniques and design guidelines. IEEE Transactions on Visualization and Computer Graphics, 16:439-454.
- Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486:75 - 174.
- Ghoniem, M., Fekete, J.-D., and Castagliola, P. (2005). On the readability of graphs using node-link and matrixbased representations: A controlled experiment and statistical analysis. Information Visualization, 4:114- 135.
- Girvan, M. and Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99:78217826.
- Heer, J. and Boyd, D. (2005). Vizster: visualizing online social networks. In Proceedings of the IEEE Symposium on Information Visualization, page 3239.
- Heer, J. and Perer, A. (2011). Orion: A system for modeling, transformation and visualization of multidimensional heterogeneous networks. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pages 51 -60.
- Henry, N. and Fekete, J.-D. (2006). Matrixexplorer: a dual-representation system to explore social networks. IEEE Transactions on Visualization and Computer Graphics, 12:677-684.
- Henry, N., Fekete, J.-D., and McGuffin, M. (2007). Nodetrix: a hybrid visualization of social networks. IEEE Transactions on Visualization and Computer Graphics, 13(6):1302 -1309.
- Jacquet-Lagrèze, E. and Siskos, Y. (1982). Assessing a set of additive utility functions to multicriteria decisionmaking: the UTA method. European Journal of Operational Research, 10:151-164.
- Keeney, R. L. and Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. Wiley, New York.
- Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, 49:291307.
- Latapy, M., Magnien, C., and Vecchio, N. D. (2008). Basic notions for the analysis of large two-mode networks. Social Networks, 30:31 - 48.
- Liu, Z., Navathe, S., and Stasko, J. (2011). Network-based visual analysis of tabular data. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pages 41 -50.
- Mehta, G. B. (1998). Preference and utility. In Barberà, S., Hammond, P. J., and Seidl, C., editors, Handbook of Utility Theory, volume 1, pages 1-47. Kluwer, Dordrecht.
- Newman, M. (2004). Detecting community structure in networks. The European Physical Journal B - Condensed Matter and Complex Systems, 38:321-330.
- Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69:026113.
- Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., and Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences, 101:2658-2663.
- Shneiderman, B. and Aris, A. (2006). Network visualization by semantic substrates. IEEE Transactions on Visualization and Computer Graphics, 12:733 -740.
- Siskos, Y., Grigoroudis, E., and Matsatsinis, N. (2005). UTA methods. In Figueira, J., Greco, S., and Ehrgott, M., editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages 297-344. Springer, Berlin.
- Siskos, Y. and Yannacopoulos, D. (1985). UTASTAR: an ordinal regression method for building additive value functions. Investigaao Operacional, 5:39-53.
- Suaris, P. R. and Kedem, G. (1988). An algorithm for quadrisection and its application to standard cell placement. IEEE Transactions on Circuits and Systems, 35:294-303.
- van Ham, F. and Perer, A. (2009). Search, show context, expand on demand: supporting large graph exploration with degree-of-interest. IEEE Transactions on Visualization and Computer Graphics, 15:953960.
- von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J. J., Fekete, J.-D., and Fellner, D. W. (2011). Visual analysis of large graphs: Stateof-the-art and future research challenges. Computer Graphics Forum, 30:17191749.
- Wattenberg, M. (2006). Visual exploration of multivariate graphs. In Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 811-819.
- Wu, A. Y., Garland, M., and Han, J. (2004). Mining scalefree networks using geodesic clustering. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 719-724.
Paper Citation
in Harvard Style
Martin L. and Bous G. (2013). Real-time Intelligent Clustering for Graph Visualization . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013) ISBN 978-989-8565-46-4, pages 471-480. DOI: 10.5220/0004305504710480
in Bibtex Style
@conference{ivapp13,
author={Lionel Martin and Géraldine Bous},
title={Real-time Intelligent Clustering for Graph Visualization},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013)},
year={2013},
pages={471-480},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004305504710480},
isbn={978-989-8565-46-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013)
TI - Real-time Intelligent Clustering for Graph Visualization
SN - 978-989-8565-46-4
AU - Martin L.
AU - Bous G.
PY - 2013
SP - 471
EP - 480
DO - 10.5220/0004305504710480