hyperbolas, general power laws, hyperbolic
functions or even piecewise functions. We have
demonstrated the feasibility of our method through
several numerical simulations of paraxial optical
beams. Such optical beams can be considered as
advanced hybrids between nonaccelerating and
accelerating diffractionless waves and, for that
reason, can find extensive applications in optical
tweezing, testing and microfabrication. Moreover,
they can operate as curved photophoretic optical
traps, capable of guiding particles around
obstructions and exerting forces that are tunable in
3D.
ACKNOWLEDGEMENTS
This work was supported by the FP7-REGPOT-
2009-1 project
“Archimedes Center for Modeling,
Analysis and Computation
” (ACMAC) and by an
“ARISTEIA” Action of the “Operational
Programme Education and Lifelong Learning” that
is co-funded by the European Social Fund (ESF) and
National Resources.
REFERENCES
Andrews, D. L. (2008). Structured Light and Its
Applications. Academic Press.
Arlt, J. and Dholakia, K. (2000). Generation of High-
Order Bessel Beams by use of an Axicon. Opt.
Comm., 177, 297-301.
Bandres, M. 2008. Accelerating Parabolic Beams. Opt.
Lett., 33, 1678-1680.
Bandres, M. 2009. Accelerating Beams. Opt. Lett., 34,
3791-3793.
Bandres, M., Gutiérrez-Vega, J. and Chávez-Cerda, S.
2004. Parabolic Nondiffracting Optical Wave Fields.
Opt. Lett. 29, 44-46.
Berry, M. and Balazs, N. 1979. Non-spreading Wave
Packets. Am. J. Phys., 47, 264-267.
Christodoulides, D. 2008. Optical Trapping: Riding
along an Airy Beam. Nat. Photon., 2, 652-653.
Durnin, J. 1987. Exact Solutions for Nondiffracting
Beams. I. The scalar theory. J. Opt. Soc. Am. A, 4,
651.
Durnin, J., Miceli, J., Eberly, J. (1987). Diffraction-free
Beams. Phys. Rev. Lett., 58, 1499-1501.
Efremidis, N., and Christodoulides, D. 2010. Abruptly
Autofocusing Waves, Opt. Lett. 35, 4045-4047.
Garces-Chavez, V., McGloin, D., Melville, H., Sibbett,
W., and Dholakia, K. (2002). Simultaneous
Micromanipulation in Multiple Planes using a Self-
Reconstructing Light Beam,” Nature, 419, 145-147.
Grier, D. G. (2003). A Revolution in Optical
Manipulation. Nature, 424, 810-816.
Gutiérrez-Vega, J., Iturbe-Castillo, M. and Chávez-Cerda,
S. 2000. Alternative Formulation for Invariant
Optical Fields: Mathieu Beams. Opt. Lett., 25, 1493-
1495.
Herman, R. and Wiggins, T. 1991. Production and Uses
of Diffractionless Beams. J. Opt. Soc. Am. A, 8, 932-
942.
Hu, Y., Zhang, P., Lou, C., Huang, S., Xu, J. and Chen, Z.
2010. Optimal Control of the Ballistic Motion of
Airy Beams. Opt. Lett., 35, 2260-2262.
Jarutis, V., Matijosius, A., Di Trapani, P. and Piskarskas,
A. 2009. Spiraling Zero-Order Bessel Beam. Opt.
Lett., 34, 2129-2131.
Mathis, A., Courvoisier, F., Froehly, L., Furfaro, L.,
Jacquot, M., Lacourt, P.A., Dudley, J.M. 2012
.
Micromachining along a Curve: Femtosecond Laser
Micromachining of Curved Profiles in Diamond and
Silicon using Accelerating Beams. Appl. Phys. Lett.,
101, art. no. 071110.
Matijosius, A., Jarutis, V. and Piskarskas, A. (2010
Generation and Control of the Spiraling Zero-Order
Bessel Beam. Opt. Express, 18, 8767-8771.
McGloin, D. and Dholakia, K. 2005. Bessel Beams:
Diffraction in a New Light. Contemp. Phys., 46, 15-
28.
Morris, J. E., Čižmár, T., Dalgarno, H.I.R., Marchington,
R.F., Gunn-Moore, F. J., and Dholakia, K. 2010.
Realization of Curved Bessel Beams: Propagation
around Obstructions. J. Opt., 12, 124002.
Polynkin, P., Kolesik, M., Moloney, J., Siviloglou, G.,
Christodoulides, D. 2009. Curved Plasma Channel
Generation using Ultra-Intense Airy Beams. Science,
324, 229-232.
Salandrino, A. and Christodoulides, D. 2010. Airy
Plasmon: A Nondiffracting Surface Wave. Opt. Lett.,
35, 2082-2084.
Siviloglou, G. and Christodoulides, D. 2007.
Accelerating Finite Energy Airy Beams. Opt. Lett., 32,
979-981.
Siviloglou, G., Broky, J., Dogariu, A. and Christodoulides,
D. 2007. Observation of Accelerating Airy Beams.
Phys. Rev. Lett., 99, 213901.
PHOTOPTICS2013-InternationalConferenceonPhotonics,OpticsandLaserTechnology
18