logic. Annals of Mathematics and Artificial Intelli-
gence, 62(1-2):103–128.
Benzm¨uller, C., Brown, C., and Kohlhase, M. (2004).
Higher-order semantics and extensionality. Journal of
Symbolic Logic, 69(4):1027–1088.
Benzm¨uller, C., Gabbay, D., Genovese, V., and Rispoli, D.
(2012). Embedding and automating conditional log-
ics in classical higher-order logic. Annals of Math-
ematics and Artificial Intelligence. In Print. DOI
10.1007/s10472-012-9320-z.
Benzm¨uller, C. and Genovese, V. (2011). Quantified condi-
tional logics are fragments of HOL. Presented at the
Int. Conference on Non-classical Modal and Predicate
Logics (NCMPL). Available as arXiv:1204.5920v1.
Benzm¨uller, C. and Paulson, L. (2008). Exploring Prop-
erties of Normal Multimodal Logics in Simple Type
Theory with LEO-II. Festschrift in Honor of Peter B.
Andrews on His 70th Birthday. College Publications.
Benzm¨uller, C. and Paulson, L. C. (2010). Multimodal and
intuitionistic logics in simple type theory. The Logic
Journal of the IGPL, 18:881–892.
Benzm¨uller, C. and Paulson, L. C. (2012). Quantified multi-
modal logics in simple type theory. Logica Univer-
salis. In Print. DOI 10.1007/s11787-012-0052-y.
Benzm¨uller, C. and Pease, A. (2012). Higher-order aspects
and context in SUMO. Journal of Web Semantics, 12-
13:104–117.
Benzm¨uller, C., Rabe, F., and Sutcliffe, G. (2008). The core
TPTP language for classical higher-order logic. Au-
tomated Reasoning, IJCAR 2008, Proc., volume 5195
of LNCS, pages 491–506. Springer.
Brown, C. (2007). Automated Reasoning in Higher-
Order Logic: Set Comprehension and Extensionality
in Church’s Type Theory. College Publications.
Buvac, S., Buvac, V., and Mason, I. A. (1995). Meta-
mathematics of contexts. Fundamenta Informaticae,
23(3):263–301.
Church, A. (1940). A formulation of the simple theory of
types. Journal of Symbolic Logic, 5:56–68.
Giunchiglia, F. (1993). Contextual reasoning. Episte-
mologia (Special Issue on Languages and Machines),
16:345–364.
Giunchiglia, F. and Serafini, L. (1994). Multilanguage hi-
erarchical logics or: How we can do without modal
logics. Artificial Intelligence, 65(1):29–70.
Guha, R. V. (1991). Context: A Formalization and Some
Applications. PhD thesis, Stanford University.
Henkin, L. (1950). Completeness in the theory of types.
Journal of Symbolic Logic, 15:81–91.
Hoder, K. and Voronkov, A. (2011). Sine qua non for large
theory reasoning. Automated Deduction, CADE-23,
Proc., volume 6803 of LNCS, pages 299–314.
Huet, G. (1973). A Complete Mechanization of Type The-
ory. In Proc. of the 3rd International Joint Conference
on Artificial Intelligence , pages 139–146.
Huet, G. (1975). A Unification Algorithm for Typed
Lambda-Calculus. Theoretical Computer Science,
1(1):27–57.
Lehmann, J., Varzinczak, I. J., and (eds.), A. B. (2012).
Reasoning with context in the semantic web. Web Se-
mantics: Science, Services and Agents on the World
Wide Web, 12-13:1–160.
McCarthy, J. (1987). Generality in artificial intelligence.
Communications of the ACM, 30(12):1030–1035.
McCarthy, J. (1993). Notes on formalizing context. In Proc.
of IJCAI’93, pages 555–562.
Meng, J. and Paulson, L. C. (2009). Lightweight relevance
filtering for machine-generated resolution problems.
Journal of Applied Logic, 7(1):41–57.
de Paiva, V. (2003). Natural deduction and context as (con-
structive) modality. In Modeling and Using Context,
Proc. of CONTEXT 2003, volume 260 of LNCS, Stan-
ford, CA, USA. Springer.
Ohlbach, H.-J. (1991). Semantics Based Translation Meth-
ods for Modal Logics. Journal of Logic and Compu-
tation, 1(5):691–746.
Pease, A., editor (2011). Ontology: A Practical Guide. Ar-
ticulate Software Press, Angwin, CA 94508.
Pease, A., Sutcliffe, G., Siegel, N., and Trac, S. (2010).
Large theory reasoning with SUMO at CASC. AI
Communications, 23(2-3):137–144.
Pietrzykowski, T. and Jensen, D. (1972). A Complete
Mechanization of Omega-order Type Theory. Proc.
of the ACM Annual Conf., pages 82–92. ACM Press.
Ramachandran, D., Reagan, P., and Goolsbey, K. (2005).
First-orderized ResearchCyc: Expressivity and effi-
ciency in a common-sense ontology. In P., S., edi-
tor, Papers from the AAAI Workshop on Contexts and
Ontologies: Theory, Practice and Applications, Pitts-
burgh, Pennsylvania, USA, 2005. Technical Report
WS-05-01, AAAI Press, Menlo Park, California.
Segerberg, K. (1973). Two-dimensional modal logic. Jour-
nal of Philosophical Logic, 2(1):77–96.
Serafini, L. and Bouquet, P. (2004). Comparing formal the-
ories of context in AI. Artif. Intell., 155:41–67.
Stalnaker, R. (1968). A theory of conditionals. Studies
in Logical Theory, American Philosophical Quarterly,
Monogr. Series no.2, page 98-112. Blackwell, Oxford.
Sutcliffe, G. (2007). TPTP, TSTP, CASC, etc. Proc. of the
2nd International Computer Science Symposium in
Russia, number 4649 in LNCS, pages 7–23. Springer.
Sutcliffe, G. (2009). The TPTP problem library and associ-
ated infrastructure. Journal of Automated Reasoning,
43(4):337–362.
Sutcliffe, G. and Benzm¨uller, C. (2010). Automated reason-
ing in higher-order logic using the TPTP THF infras-
tructure. Journal of Formalized Reasoning, 3(1):1–27.
Thomason, R. H. (1984). Combinations of tense and modal-
ity. Handbook of Philosophical Logic, Vol. 2: Exten-
sions of Classical Logic, pages 135–165. D. Reidel.
Woods, J. and Gabbay, D. M., editors (since 2004). Hand-
book of the History of Logic, volumes 1-8. Elsevier.
ATop-downApproachtoCombiningLogics
351