Doan, A., Madhavan, J., Domingos, P., and Halevy, A.
(2002). Learning to map between ontologies on the
semantic web. In Proc. of the 11th Int. Conf. on WWW.
Faria, D., Schlicker, A., Pesquita, C., Bastos, H., Ferreira,
A. E., Albrecht, M., and Falcão, A. (2012). Mining
go annotations for improving annotation consistency.
PLoS ONE, 7.
Hackenberg, M. and Matthiesen, R. (2008). Annotation-
Modules: A tool for finding significant combinations
of multisource annotations for gene lists. Bioinformat-
ics.
Hoehndorf, R., Ngonga, A., Dannemann, M., and Kelso,
J. (2008). From terms to categories: Testing the sig-
nificance of co-occurrences between ontological cat-
egories. In Proc. of the 3rd Int. Symp. on Semantic
Mining in Biomed.
Joyce, A. R. and Palsson, B. O. (2006). The model organism
as a system: integrating ’omics’ data sets. Nat. Rev.
Mol. Cell. Biol., 7(3).
Karpinets, T., Park, B., and Uberbacher, E. (2012). Ana-
lyzing large biological datasets with association net-
works. Nucleic Acids Research.
Lallich, S., Teytaud, O., and Prudhomme, E. (2007). As-
sociation rule interestingness: Measure and statistical
validation. In Quality Measures in Data Mining, Stud-
ies in Comp. Intel.
MacDonald, N. and Beiko, R. (2010). Efficient learning
of microbial genotype-phenotype association rules.
Bioinformatics, 26(15).
Maedche, A. and Staab, S. (2000). Discovering conceptual
relations from text. In Proc. of the 14th ECAI.
Martin, T., Shen, Y., and Azvine, B. (2008). Granular asso-
ciation rules for multiple taxonomies: A mass assign-
ment approach. Uncertainty Reasoning for the Seman-
tic Web I.
Nagel, U., Thiel, K., Kötter, T., Piatek, D., and Berthold, M.
(2011). Bisociative discovery of interesting relations
between domains. In Proc. of the 10th Int. Symp. on
Intel. Data Analysis, Lecture Notes in Computer Sci-
ence (LNCS).
Paulheim, H. and Fümkranz, J. (2012). Unsupervised gen-
eration of data mining features from linked open data.
In Proc. of the 2nd Int. Conf. on Web Intel., Mining
and Semantics.
Schjetne, K., Gundersen, H., Iversen, J.-G., Thompson, K.,
and Bogen, B. (2003). Antibody-mediated delivery of
antigen to chemokine receptors on antigen-presenting
cells results in enhanced cd4+ t cell responses. Euro-
pean J. of Immunology, 33(11).
Schneider, M., Meingassner, J., Lipp, M., Moore, H., and
Rot, A. (2007). Ccr7 is required for the in vivo func-
tion of cd4+ cd25+ regulatory t cells. The J. of Exp.
Med., 204(4).
Shivakumar, B. and Porkodi, R. (2012). Finding relation-
ships among gene ontology terms in biological doc-
uments using association rule mining and go annota-
tions. Int. J. of Computer Science, Inf. Tech., & Secu-
rity, 2(3).
Silla, C. and Freitas, A. (2011). Selecting different protein
representations and classification algorithms in hierar-
chical protein function prediction. Intel. Data Analy-
sis, 15(6).
Srikant, R. and Agrawal, R. (1995). Mining generalized
association rules. In Proc. of the 21th Int. Conf. on
Very Large Data Bases.
Surana, A., Kiran, U., and Reddy, P. (2010). Selecting
a right interestingness measure for rare association
rules. In 16th Int. Conf. on Manag. of Data.
Tamura, M. and D’haeseleer, P. (2008). Microbial
genotype-phenotype mapping by class association
rule mining. Bioinformatics, 24(13).
Tan, P., Kumar, V., and Srivastava, J. (2004). Selecting the
right objective measure for association analysis. In-
formation Systems, 29.
Troyanskaya, O., Dolinski, K., Owen, A., Altman, R., and
Botstein, D. (2003). A Bayesian framework for com-
bining heterogeneous data sources for gene function
prediction (in S. cerevisiae).
Tseng, V., Yu, H., and Yang, S. (2009). Efficient mining of
multilevel gene association rules from microarray and
gene ontology. Inform. Syst. Front.
Van Hemert, J. and Baldock, R. (2007). Mining spatial gene
expression data for association rules. In Proc. of the
1st int. conf. on Bioinformatics research and develop-
ment, BIRD’07.
Vroling, B., Sanders, M., Baakman, C., Borrmann, A., Ver-
hoeven, S., Klomp, J., Oliveira, L., de Vlieg, J., and
Vriend, G. (2011). Gpcrdb: information system for
g protein-coupled receptors. Nucleic Acids Research,
39(suppl 1).
Wu, T., Chen, Y., and Han, J. (2010). Re-examination of
interestingness measures in pattern mining: a unified
framework. Data Min. Knowl. Disc., 21.
BIOINFORMATICS2013-InternationalConferenceonBioinformaticsModels,MethodsandAlgorithms
236