sessions separated in time as well as different ac-
quisition protocols. Extensive simulations have been
performed by considering different sets of electrodes
both with respect to their positioning and number.
In summary in our analysis a very high degree of
repeatability over the considered interval has been
achieved with a proper number of electrodes, their
adequate positioning and by considering appropriate
subband related to the employed acquisition protocol.
REFERENCES
Abdullah, M., Subari, K., Loong, J., and Ahmad, N. (2010).
Analysis of effective channel placement for an eeg-
based biometric system. In Biomedical Engineering
and Sciences (IECBES), 2010 IEEE EMBS Confer-
ence on, pages 303 –306.
Barry, R., Clarke, A., Johnstone, S., Magee, C., and Rushby,
J. (2007). Eeg differences between eyes-closed and
eyes-open resting conditions. Clinical Neurophysiol-
ogy, 118:2765–2773.
Brigham, K. and Kumar, B. V. (2010). Subject identifica-
tion from electroencephalogram (eeg) signals during
imagined speech. In Proceedings of the IEEE Fourth
International Conference on Biometrics: Theory, Ap-
plications and Systems (BTAS’10).
Campisi, P., La Rocca, D., and Scarano, G. (2012). Eeg for
automatic person recognition. Computer, 45(7):87–
89.
Campisi, P., Scarano, G., Babiloni, F., De Vico Fallani,
F., Colonnese, S., Maiorana, E., and L., F. (2011).
Brain waves based user recognition using the eyes
closed resting conditions protocol. In IEEE Interna-
tional Workshop on Information Forensics and Secu-
rity (WIFS’11).
Carmena, J. M. (2012). Becoming bionic. IEEE Spectrum,
49(3):24–29.
Debener, S., Minow, F., Emkes, R., Gandras, K., and
de Vos, M. (2012). How about taking a low-cost,
small, and wireless eeg for a walk? Psychophysiol-
ogy, 49(11):1617–1621.
Dornhege, G., del R. Mill´an, J., Hinterberger, T., McFar-
land, D., and M´oller, K.-R., editors (2007). Towards
Brain-Computing Interfacing. MIT Press, Cambridge,
MA.
Kay, S. (1988). Modern Spectral Estimation. Theory and
Applications. Prentice-Hall.
La Rocca, D., Campisi, P., and Scarano, G. (2012). Eeg
biometrics for individual recognition in resting state
with closed eyes. In Proceedings of the International
Conference of the Biometrics Special Interest Group
(BIOSIG), pages 1–12.
Marcel, S. and del R. Millan, J. (2007). Person authentica-
tion using brainwaves (eeg) and maximum a posteri-
ori model adaptation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(4):743–748.
McFarland, D., McCane, L., David, S., and Wolpaw, J.
(1997). Spatial filter selection for EEG-based commu-
nication. Electroencephalography and Clinical Neu-
rophysiology, 103(3):386–394.
Mohammadi, G., Shoushtari, P., Molaee Ardekani, B., and
Shamsollahi, M. B. (2006). Person Identification by
Using AR Model for EEG Signals. In Proceedings of
World Academy of Science, Engineering and Technol-
ogy, volume 11, pages 281–285.
Nakanishi, I., Baba, S., and Miyamoto, C. (2009). Eeg
based biometric authentication using new spectral fea-
tures. In ISPACS 2009, pages 651–654.
Palaniappan, R. and Patnaik, L. M. (2007). Identity verifica-
tion using resting state brain signals. In Quigley, M.,
editor, Encyclopedia of Information Ethics and Secu-
rity, pages 335–341. IGI Global.
Paranjape, R., Mahovsky, J., Benedicenti, L., and Koles,
Z. (2001). The electroencephalogram as a biometric.
In Canadian Conference on Electrical and Computer
Engineering, pages 1363–1366.
Poulos, M., Rangoussi, M., Chrissikopoulos, V., and Evan-
gelou, A. (1999). Parametric person identification
from the eeg using computational geometry. In The
6th IEEE International Conference on Electronics,
Circuits and Systems, 1999. ICECS ’99., volume 2,
pages 1005–1008.
Riera, A., Soria-Frisch, A., Caparrini, M., Grau, C., and
Ruffini, G. Unobtrusive biometric system based on
electroencephalogram analysis. EURASIP J. Adv. Sig-
nal Process.
Schwartz, M. and Andrasik, F. (2003). Biofeedback: A
Practitioner’s Guide. Guilford Press.
Su, F., Xia, L., Cai, A., Wu, Y., and Ma, J. (2010). Eeg-
based personal identification: from proof-of-concept
to a practical system. In Pattern Recognition (ICPR
2010), 20th International Conference on, pages 3728–
3731.
Zhao, Q., Peng, H., Hu, B., Liu, Q., Liu, L., Qi, Y., and
Li, L. (2010). Improving individual identification in
security check with an eeg based biometric solution.
In Proceedings of the 2010 international conference
on Brain informatics, BI’10, pages 145–155, Berlin,
Heidelberg. Springer-Verlag.
BIOSIGNALS2013-InternationalConferenceonBio-inspiredSystemsandSignalProcessing
428