Table 3. The estimates of the mean values.
Class
number, s
Average A priori
probability, π
s
μ
1
μ
2
1 199 148 0.17
2 139 88 0.25
3 180 129 0.29
4 151 120 0.26
5 140 42 0.12
6 28 264 0.004
7 36 142 0.002
8 117 174 0.005
References
1. Solov'eva, I. S., Sonechkin, D. M., and Kharitonov, V. F.: Computerized Processing and
Analysis of Television Images of Clouds. In Tr. Gidrometeorol. Nauchno-Issled. Tsentra
(1971) no. 73, 64-74
2. Bakst, L. A. and Fedorova, N. N.: A Study of Clouds for Synoptic Analysis Based on Mul-
tispectral AVHRR Data from a NOAA Satellite. In Issl. Zemli iz Kosmosa (1994) no. 4, 3-
8
3. Tokuno, M. and Tsuchija, K.: Classification of Cloud Types Based on Data of Multiple
Satellite Sensors. In Adv. Space Res. (1994) Vol. 14, no. 3, 199-206
4. Peak, J. E. and Tag, P. M.: Segmentation of Satellite Imagery Using Hierarchical Thresh-
olding and Neural Networks. In J. Appl. Meteorol. (1994) Vol. 33, no. 5, 605-616
5. Strabala, K. I., Ackerman, S. A., and Menzel, W.P.: Cloud Properties Inferred from 8-12
μm Data. In J. Appl. Meteorol. (1994) Vol. 33, no. 2, 212-219
6. Bakst, L. and Fedorova, N.: On Some Methods of Synoptic Analysis Based on the Study of
the Multispectral Satellite Data Variation. In Proc. 9th Meteorological Satellite Data Users'
Conj.. Locarno, Switzerland, Darmstadt: EUMETSAT (1992) 25-32
7. Bankertt, R. L.: Cloud Classification of AVHRR Imagery in Maritime Regions Using a
Probabilistic Neural Network. In J. Appl. Meteorol. (1994) Vol. 33, no. 8, 1023-1039
8. Voloshin, G.Ya., Burlakov, I.A., and Kosenkova, S.T.: Statisticheskie metody resheniya
zadach raspoznavaniya, osnovannye na approksimatsionnom podkhode (Statistical Methods
for Recognition Problems Based on the Approximation Approach). Vladivostok, ch. 1
(1992)
9. Careira-Perpiñán, M. A., Williams, C.: On the number of modes of a Gaussian mixture.
Inform. In Res. Report EDI-INF-RR-0159. School of Inf. Univ. of Edinburg (2003)
10. Anderson, T. W.: An Introduction to Multivariate Statistical Analysis. Wiley, New York
(1958). Translated under the title Vvedenie v mnogomernyi statisticheskii analiz. Fizmat-
giz, Moscow (1963)
11. Day, N. E.: Estimating the Components of a Mixture of Normal Distributions. In Bio-
metrika (1969) Vol. 56, no. 3, 463-474.
12. Aprausheva, N. N.: Analysis of a Splitting Algorithm for the Mixture of Normally Distrib-
uted Classes, In Aivazyan. S.A. (ed.): Mnogomernyi statisticheskii analiz v sotsial'no-
ekonomicheskikh issledovaniyakh (Multidimensional Analysis in Social and Economic
Studies), Nauka, Moscow (1974) 135-150
13. Aprausheva, N. N.: Transformation of Features in the Statistical Solution of an Automated
Classification Problem. In Izv. Akad. Nauk SSSR, Ser: Tekhn. Kibern. (1985) no. 2, 167-
174
119