to automatically compute the dissimilarity scores, for
instance by analyzing the distribution values of the
measures. Converting the binary vectors into real-
valued vectors would refine the degree of ignorance
of the measures. Such vectors may be computed with
specific datasets, in which a minor change reflects a
feature.
REFERENCES
Aumueller, D., Do, H. H., Massmann, S., and Rahm,
E. (2005). Schema and ontology matching with
COMA++. In ACM SIGMOD, pages 906–908.
Avesani, P., Giunchiglia, F., and Yatskevich, M. (2005). A
large scale taxonomy mapping evaluation. In Interna-
tional Semantic Web Conference, pages 67–81.
Bellahsene, Z., Bonifati, A., and Rahm, E. (2011). Schema
Matching and Mapping. Springer-Verlag, Heidelberg.
Bernstein, P. A., Madhavan, J., and Rahm, E. (2011).
Generic schema matching, ten years later. PVLDB,
4(11):695–701.
Bilke, A. and Naumann, F. (2005). Schema matching using
duplicates. ICDE, 0:69–80.
Bozovic, N. and Vassalos, V. (2008). Two-phase schema
matching in real world relational databases. In ICDE
Workshops, pages 290–296.
Christen, P. (2008). Febrl -: an open source data clean-
ing, deduplication and record linkage system with a
graphical user interface. In SIGKDD International
Conference on Knowledge Discovery and Datamin-
ing, KDD’08, pages 1065–1068. ACM.
Cohen, W., Ravikumar, P., and Fienberg, S. (2003). A com-
parison of string distance metrics for name-matching
tasks. In In Proceedings of the IJCAI-2003.
Cruz, I. F., Sunna, W., Makar, N., and Bathala, S. (2007).
A visual tool for ontology alignment to enable geospa-
tial interoperability. J. Vis. Lang. Comput., 18(3):230–
254.
Dhamankar, R., Lee, Y., Doan, A., Halevy, A., and Domin-
gos, P. (2004). iMAP: Discovering Complex Semantic
Matches between Database Schemas. In ACM SIG-
MOD, pages 383–394.
Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., and
Halevy, A. Y. (2003). Learning to match ontologies
on the semantic web. VLDB J., 12(4):303–319.
Drumm, C., Schmitt, M., Do, H. H., and Rahm, E. (2007).
Quickmig: automatic schema matching for data mi-
gration projects. In CIKM, pages 107–116. ACM.
Duchateau, F., Coletta, R., Bellahsene, Z., and Miller, R. J.
(2009). (Not) Yet Another Matcher. In CIKM, pages
1537–1540.
Euzenat, J. et al. (2004). State of the art on ontology match-
ing. Technical Report KWEB/2004/D2.2.3/v1.2,
Knowledge Web.
Euzenat, J., Ferrara, A., van Hage, W. R., Hollink, L., Meil-
icke, C., Nikolov, A., Ritze, D., Scharffe, F., Shvaiko,
P., Stuckenschmidt, H., Sv
´
ab-Zamazal, O., and dos
Santos, C. T. (2011). Results of the ontology align-
ment evaluation initiative 2011. In OM.
Euzenat, J. and Shvaiko, P. (2007). Ontology matching.
Springer-Verlag, Heidelberg (DE).
Fellegi, I. P. and Sunter, A. B. (1969). A theory for record
linkage. Journal of the American Statistical Associa-
tion, 64:1183–1210.
Gracia, J., Bernad, J., and Mena, E. (2011). Ontology
matching with cider: evaluation report for oaei 2011.
In OM.
Jain, A., Nandakumar, K., and Ross, A. (2005). Score nor-
malization in multimodal biometric systems. Pattern
Recognition, 38(12):2270–2285.
K
¨
opcke, H. and Rahm, E. (2010). Frameworks for entity
matching: A comparison. Data Knowl. Eng., 69:197–
210.
Kopcke, H., Thor, A., and Rahm, E. (2010). Learning-based
approaches for matching web data entities. IEEE In-
ternet Computing, 14(4):23–31.
Li, J., Tang, J., Li, Y., and Luo, Q. (2009). Rimom: A dy-
namic multistrategy ontology alignment framework.
IEEE Trans. on Knowl. and Data Eng., 21(8):1218–
1232.
Panse, F., Ritter, N., and van Keulen, M. (2013). Indeter-
ministic handling of uncertain decisions in deduplica-
tion. Journal of Data and Information Quality.
Resnik, P. (1999). Semantic similarity in a taxonomy:
An information-based measure and its application to
problems of ambiguity in natural language. Journal
of Artificial Intelligence Research, 11:95–130.
Saleem, K. and Bellahsene, Z. (2009). Complex schema
match discovery and validation through collaboration.
In OTM Conferences (1), pages 406–413.
Shvaiko, P. and Euzenat, J. (2005). A survey of schema-
based matching approaches. Journal of Data Seman-
tics IV, pages 146–171.
Shvaiko, P. and Euzenat, J. (2008). Ten challenges for ontol-
ogy matching. In OTM Conferences (2), pages 1164–
1182.
Talburt, J. R. (2011). Entity Resolution and Information
Quality. Elsevier.
Winkler, W. E. (2006). Overview of record linkage and cur-
rent research directions. Technical report, Bureau of
the Census.
AGenericandFlexibleFrameworkforSelectingCorrespondencesinMatchingandAlignmentProblems
137