Controllability for Nondeterministic Finite Automata with Variables

Jasen Markovski

2013

Abstract

Supervisory control theory deals with automated synthesis of models of supervisory controllers that ensure safe coordinated discrete-event behavior of a given system. To increase the expressivity of the framework and provide for a greater modeling convenience, several extensions with variables have been proposed. One of the most prominent such extensions is implemented by means of extended finite automata with variables. We revisit the notion of controllability for nondeterministic finite automata with variables, which defines conditions under which a model of a supervisory controller can be synthesized. We will show that the existing notion of controllability for extended finite automata does not have desirable algebraic properties, i.e., it is not a preorder. We propose to employ an extension of controllability for nondeterministic discrete-event system based on a behavioral relation termed partial bisimulation, which we show that subsumes the existing notion of controllability for extended finite automata.

References

  1. Baeten, J., van Beek, D., van Hulst, A., and Markovski, J. (2011a). A process algebra for supervisory coordination. In Proceedings of PACO 2011, volume 60 of EPTCS, pages 36-55. Open Publishing Association.
  2. Baeten, J. C. M., Basten, T., and Reniers, M. A. (2010). Process Algebra: Equational Theories of Communicating Processes, volume 50 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.
  3. Baeten, J. C. M., van Beek, D. A., Luttik, B., Markovski, J., and Rooda, J. E. (2011b). A process-theoretic approach to supervisory control theory. In Proceedings of ACC 2011, pages 4496-4501. IEEE.
  4. Barrett, G. and Lafortune, S. (1998). Bisimulation, the supervisory control problem and strong model matching for finite state machines. Discrete Event Dynamic Systems, 8(4):377-429.
  5. Cassandras, C. and Lafortune, S. (2004). Introduction to discrete event systems. Kluwer Academic Publishers.
  6. Chen, Y.-L. and Lin, F. (2000). Modeling of discrete event systems using finite state machines with parameters. In Proceedings of CCA 2000, pages 941 -946.
  7. Eshuis, R. and Fokkinga, M. M. (2002). Comparing refinements for failure and bisimulation semantics. Fundamenta Informaticae, 52(4):297-321.
  8. Fabian, M. and Lennartson, B. (1996). On nondeterministic supervisory control. Proceedings of the 35th IEEE Decision and Control, 2:2213-2218.
  9. Gaudin, B. and Deussen, P. (2007). Supervisory control on concurrent discrete event systems with variables. In Proceedings of ACC 2007, pages 4274 -4279.
  10. Glabbeek, R. J. v. (2001). The linear time-branching time spectrum I. Handbook of Process Algebra, pages 3- 99.
  11. Leveson, N. (1990). The challenge of building processcontrol software. IEEE Software, 7(6):55-62.
  12. Ma, C. and Wonham, W. M. (2005). Nonblocking Supervisory Control of State Tree Structures, volume 317 of Lecture Notes in Control and Information Sciences. Springer.
  13. Markovski, J. (2012a). Coarsest controllability-preserving plant minimization. In Proceedings of WODES 2012, pages 251-258. IFAC.
  14. Markovski, J. (2012b). Communicating processes with data for supervisory coordination. In Proceedings of FOCLASA 2012, volume 91 of EPTCS, pages 97-111. Open Publishing Association.
  15. Markovski, J., van Beek, D. A., Theunissen, R. J. M., Jacobs, K. G. M., and Rooda, J. E. (2010). A state-based framework for supervisory control synthesis and verification. In Proceedings of CDC 2010, pages 3481- 3486. IEEE.
  16. Miremadi, S., Akesson, K., and Lennartson, B. (2008). Extraction and representation of a supervisor using guards in extended finite automata. In Proceedings of WODES 2008, pages 193-199. IEEE.
  17. Overkamp, A. (1997). Supervisory control using failure semantics and partial specifications. IEEE Transactions on Automatic Control, 42(4):498-510.
  18. Ramadge, P. J. and Wonham, W. M. (1987). Supervisory control of a class of discrete-event processes. SIAM Journal on Control and Optimization, 25(1):206-230.
  19. Rutten, J. J. M. M. (2000). Coalgebra, concurrency, and control. In Proceedings of WODES 2000, pages 31- 38. Kluwer.
  20. Schiffelers, R. R. H., Theunissen, R. J. M., Beek, D. A. v., and Rooda, J. E. (2009). Model-based engineering of supervisory controllers using CIF. Electronic Communications of the EASST, 21:1-10.
  21. Skoldstam, M., Akesson, K., and Fabian, M. (2007). Modeling of discrete event systems using finite automata with variables. In Proceedings of CDC 2007, pages 3387-3392. IEEE.
  22. Zhou, C., Kumar, R., and Jiang, S. (2006). Control of nondeterministic discrete-event systems for bisimulation equivalence. IEEE Transactions on Automatic Control, 51(5):754-765.
Download


Paper Citation


in Harvard Style

Markovski J. (2013). Controllability for Nondeterministic Finite Automata with Variables . In Proceedings of the 8th International Joint Conference on Software Technologies - Volume 1: ICSOFT-PT, (ICSOFT 2013) ISBN 978-989-8565-68-6, pages 438-446. DOI: 10.5220/0004430604380446


in Bibtex Style

@conference{icsoft-pt13,
author={Jasen Markovski},
title={Controllability for Nondeterministic Finite Automata with Variables},
booktitle={Proceedings of the 8th International Joint Conference on Software Technologies - Volume 1: ICSOFT-PT, (ICSOFT 2013)},
year={2013},
pages={438-446},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004430604380446},
isbn={978-989-8565-68-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 8th International Joint Conference on Software Technologies - Volume 1: ICSOFT-PT, (ICSOFT 2013)
TI - Controllability for Nondeterministic Finite Automata with Variables
SN - 978-989-8565-68-6
AU - Markovski J.
PY - 2013
SP - 438
EP - 446
DO - 10.5220/0004430604380446