Workshop on Emerging Trends in Technology, ICWET
’11, pages 690–693, New York, NY, USA. ACM.
Daum
´
e, III, H. and Marcu, D. (2002). A noisy-channel
model for document compression. In Proceedings of
the 40th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’02, pages 449–456, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.
Devasena, C. (2012). Automatic text categorization and
summarization using rule reduction. In Advances
in Engineering, Science and Management (ICAESM),
2012 International Conference on, pages 594–598.
Genest, P.-E. and Lapalme, G. (2011). Framework for ab-
stractive summarization using text-to-text generation.
In Proceedings of the Workshop on Monolingual Text-
To-Text Generation, pages 64–73, Portland, Oregon.
Association for Computational Linguistics.
Guelpeli, M. V. C., Garcia, A., and Branco, A. (2011). The
process of summarization in the pre-processing stage
in order to improve measurement of texts when clus-
tering. In Internet Technology and Secured Trans-
actions (ICITST), 2011 International Conference for,
pages 388–395.
Gunen, Erkan, D. R. R. (2004). Lexrank: Graph.based lexi-
cal centrality as salience in text summarization. Jour-
nal of Artificial Intelligence Research 22 (2004) 457-
479, 22.
Hotho, A., Nrnberger, A., and Paa, G. (2005). A brief sur-
vey of text mining. LDV Forum - GLDV Journal for
Computational Linguistics and Language Technology.
Inniss, T. R., Lee, J. R., Light, M., Grassi, M. A., Thomas,
G., and Williams, A. B. (2006). Towards applying text
mining and natural language processing for biomedi-
cal ontology acquisition. In Proceedings of the 1st in-
ternational workshop on Text mining in bioinformat-
ics, TMBIO ’06, pages 7–14, New York, NY, USA.
ACM.
Kianmehr, K., Gao, S., Attari, J., Rahman, M. M.,
Akomeah, K., Alhajj, R., Rokne, J., and Barker, K.
(2009). Text summarization techniques: Svm versus
neural networks. In Proceedings of the 11th Inter-
national Conference on Information Integration and
Web-based Applications & Services, iiWAS ’09, pages
487–491, New York, NY, USA. ACM.
Ling, X., Mei, Q., Zhai, C., and Schatz, B. (2008). Min-
ing multifaceted overviews of arbitrary topics in a text
collection. In In Proc. SIGKDD08, pages 497–505.
ACM.
Liu, H.-H., Huang, Y.-T., and Chiang, J.-H. (2010). A
study on paragraph ranking and recommendation by
topic information retrieval from biomedical literature.
In Computer Symposium (ICS), 2010 International,
pages 859–864.
Long, C., Huang, M.-L., Zhu, X.-Y., and Li, M. (2010). A
new approach for multi-document update summariza-
tion. J. Comput. Sci. Technol., 25(4):739–749.
Mehdad, Y., Negri, M., Cabrio, E., Kouylekov, M., and
Magnini, B. EDITS: An Open Source Framework for
Recognizing Textual Entailment.
Mei, Q., Guo, J., and Radev, D. (2010). Divrank: the in-
terplay of prestige and diversity in information net-
works. In Proceedings of the 16th ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, KDD ’10, pages 1009–1018, New York,
NY, USA. ACM.
Mohammad, S., Dorr, B., Egan, M., Hassan, A., Muthukr-
ishan, P., Qazvinian, V., Radev, D., and Zajic, D.
(2009). Using citations to generate surveys of sci-
entific paradigms. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics, NAACL ’09, pages 584–
592, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.
Muthukrishnan, P., Radev, D., and Mei, Q. (2011). Si-
multaneous similarity learning and feature-weight
learning for document clustering. In Proceedings
of TextGraphs-6: Graph-based Methods for Natu-
ral Language Processing, TextGraphs-6, pages 42–
50, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.
Park, J., Fukuhara, T., Ohmukai, I., Takeda, H., and Lee,
S.-g. (2008). Web content summarization using social
bookmarks: a new approach for social summarization.
In Proceedings of the 10th ACM workshop on Web in-
formation and data management, WIDM ’08, pages
103–110, New York, NY, USA. ACM.
Reeve, L. H., Han, H., Nagori, S. V., Yang, J. C., Schwim-
mer, T. A., and Brooks, A. D. (2006). Concept fre-
quency distribution in biomedical text summarization.
In Proceedings of the 15th ACM international con-
ference on Information and knowledge management,
CIKM ’06, pages 604–611, New York, NY, USA.
ACM.
Saravanan, M., Raman, S., and Ravindran, B. (2005). A
probabilistic approach to multi-document summariza-
tion for generating a tiled summary. In Computational
Intelligence and Multimedia Applications, 2005. Sixth
International Conference on, pages 167–172.
Tran, N.-P., Lee, M., Hong, S., and Shin, M. (2012). Mem-
ory efficient parallelization for aho-corasick algorithm
on a gpu. In High Performance Computing and Com-
munication 2012 IEEE 9th International Conference
on Embedded Software and Systems (HPCC-ICESS),
2012 IEEE 14th International Conference on, pages
432–438.
Wang, W., Xiao, C., Lin, X., and Zhang, C. (2009). Effi-
cient approximate entity extraction with edit distance
constraints. In Proceedings of the 2009 ACM SIG-
MOD International Conference on Management of
data, SIGMOD ’09, pages 759–770, New York, NY,
USA. ACM.
Yu, L. and Ren, F. (2009). A study on cross-language text
summarization using supervised methods. In Natu-
ral Language Processing and Knowledge Engineer-
ing, 2009. NLP-KE 2009. International Conference
on, pages 1–7.
Zhan, J., Loh, H. T., and Liu, Y. (2009). Gather customer
concerns from online product reviews - a text sum-
marization approach. Expert Syst. Appl., 36(2):2107–
2115.
Zhang, Pei-ying, L. C.-h. (2009). Automatic text summa-
rization based on sentences clustering and extraction.
IEEE.
ICEIS2013-15thInternationalConferenceonEnterpriseInformationSystems
288