Furthermore, we could select from ranges of
super/sub classes and also properties by using:
#superclasses #directsuperclasses #subclasses
#scopeProperties #properties #usedproperties. All
these are very useful to exploit better the ontological
semantics stored in OntoDB. This sub-section
highlighted only few of OntoQL abilities, which are
more interesting (Jean (thesis), 2006). We show on a
future work how we could retrieve more from
OntoQL abilities, and from using OntoDB for
ontology and data storage.
7 CONCLUSIONS
In this paper, we presented a reverse engineering
approach that aims to migrate relational databases to
OBDB. We proposed first a set of transformation
rules to extract an ontology from a relational
database. And to optimize the extracted ontology we
proposed an enrichment process. This last uses
external domain ontology and attempts to add more
classes or properties to make the ontology
semantically more complete. Then we stored the
enriched ontology and data in OntoDB. In a future
work we will focus on running more experiments,
tests and evaluations on larger databases, and prove
how OBDB could bring many benefits for an
enterprise. Equally important, we prove the
efficiency of our transformation process by testing
several transformation criteria. Such criteria are
useful to prove that there’s no information loss in the
transformation process.
REFERENCES
Alexaki, S. Christophides, V. Karvounarakis, G.
Plexousakis, D. Tolle, K., 2001. The ics-forth rdfsuite:
Managing voluminous rdf description bases. In
SemWeb. Hong Kong, pp. 1-13.
Astrova, I., 2004. Reverse Engineering of Relational
Databases to Ontologies. In Proceedings of the 1st
European Semantic Web Symposium (ESWS),
Heraklion, Greece, pp 327-341.
Astrova, I., Kalja, A., 2006. Mapping of SQL Relational
Schemata to OWL Ontologies. In Proceedings of the
6th WSEAS International Conference on Applied
Informatics and Communications, Elounda, Greece.
pp375-380.
Astrova, I., Stantic, B., 2005. An HTML Forms Driven
Approach to Reverse Engineering of Relational
Databases to Ontologies. In Proceedings of the 23rd
IASTED International Conference on Databases and
Applications (DBA), Innsbruck, Austria.pp 246 - 251.
Benslimane, S., Malki, M., Rahmouni, M., Rahmoun, A.,
2008. Towards Ontology Extraction from Data-
IntensiveWeb Sites: An HTML Forms-Based Reverse
Engineering Approach. The International Arab
Journal of Information Technology. pp 34-44.
Broekstra, J., Kampman, A., Van Harmelen, F., 2002.
Sesame : A generic architecture for storing and
querying rdf and rdf schema. Proceedings of the First
Internation Semantic WebConference, number 2342 in
Lecture Notes in Computer Science. pp 54–68.
Dehainsala, H., Pierra, G., Bellatreche, L., 2007. Ontodb:
An ontology-based database for data intensive
applications. In DASFAA. pp 497-508.
Domain-Ontology http://ontoware.org/swrc/swrc_v0.3.owl
Hainaut, J., 2002. Introduction to database reverse
engineering. Book, 160 pages.
Thomas R, Gruber., 1993. Formal ontology in conceptual
analysis and knowledge representation. Chapter:
“Towards principles for the design of ontologies used
for knowledge sharing”. Kluwer Academic Publishers.
Jean,. S., Aït Ameur, Y., Pierra, G., 2006. Querying
ontology based databases the ontoql proposal. In
Proceedings of the 18th International Conference on
Software Engineering & Knowledge Engineering, pp
166—171.
Jean, S (thesis).2006., OntoQL, un langage d’exploitation
des bases de données à base ontologique. Mémoire de
doctorat.
Jing, L., Li, M.,Lei, Z., Jean-Sébastien, B., Chen, W., Yue,
P., Yong, Y., 2007. SOR: A Practical System for
Ontology Storage, Reasoning. In VLDB 2007, 33rd
Very Large Data Bases Conference ,pp 1402-1405.
Johannesson, P., 1994. A Method for Transforming
Relational Schemas into Conceptual Schemas. In
Proceedings of the Tenth International Conference on
Data Engineering IEEE Computer Society
Washington, DC, USA, pp 190-201.
Kashyap, V., 1999. Design and creation of ontologies for
environmental information retrieval. In Proceedings of
the 12th Workshop on Knowledge Acquisition,
Modeling and Management. Alberta, Canada. pp. 3–
21.
Pierra, G. Dehainsala, H. Aït-Ameur, Y. Bellatreche, L.
2005. Base de données à base ontologique: principes
et mise en œuvre. Ingénierie des Systèmes
d’Information, 10(2):91-115.
Pierra, G., Dehainsala, H. Aït-Ameur, Y., Bellatreche, L.
Chochon, J and Mimoune, M. (2004). Base de
Données à Base Ontologique: le modèle OntoDB.
Proceedings of Base de Données Avancées 20èmes
Journées (BDA’04), 263–286.
Ramanathan, S., Hodges, J., 1997. Extraction of object-
oriented structures from existing relational databases.
SIGMOD Jounral Vol 26 number 1, pp 59-64.
Rene Robin, C.R., 2010. A Novel Algorithm for Fully
Automated Ontology Merging Using Hybrid Strategy.
European Journal of Scientific Research. Vol.47 No.1,
PP. 074-081.
Seaborne, A., Prud’hommeaux, E. Sparql query language
for rdf. http: // www. w3. org/ TR/ rdf-sparql-query/
ICEIS2013-15thInternationalConferenceonEnterpriseInformationSystems
296