8 CONCLUSIONS AND FUTURE
WORK
In this paper, we have provided a comparative
analysis of the SDWM approach (Del Aguila et al.,
2011; Cuzzocrea & Fidalgo, 2012a; Cuzzocrea &
Fidalgo, 2012b) against the state-of-the-art SDW
meta-model proposals (Fidalgo et al., 2004;
Malinowski & Zimányi, 2007; Glorio & Trujillo,
2008). Results of our analysis clearly state that the
SDWM proposal exposes a higher expressive power
and allows us to obtain more concise and compact
SDW schemas.
Future work is oriented towards enriching
SDWM with novel aspects such as security and
privacy of SDW, in line with recent results in the
context of security and privacy of DW and OLAP
(e.g., (Cuzzocrea & Bertino, 2011; Cuzzocrea et al.,
2012; Cuzzocrea & Saccà, 2012)).
REFERENCES
Bédard, Y., Merrett, T., & Han, J. 2001. Fundamentals of
spatial data warehousing for geographic knowledge
discovery. Geographic data mining and knowledge
discovery, vol. 2, pp. 53-73.
Del Aguila, P. S. R., Fidalgo, R. N. & Mota, A., 2011.
Towards a more straightforward and more expressive
metamodel for SDW modeling. In Proceedings of the
ACM 14th international workshop on Data
Warehousing and OLAP. New York, NY, USA: ACM,
pp. 31-36.
Cuzzocrea, A., & Bertino, E., 2011. Privacy Preserving
OLAP over Distributed XML Data: A Theoretically-
Sound Secure-Multiparty-Computation Approach.
Journal of Computer and System Sciences 77(6), pp.
965-987.
Cuzzocrea, A., Bertino, E., & Saccà D., 2012. Towards a
theory for privacy preserving distributed OLAP. In:
EDBT/ICDT Workshops 2012, pp. 221-226.
Cuzzocrea, A. & Fidalgo, R. N., 2012a. Enhancing
Coverage and Expressive Power of Spatial Data
Warehousing Modeling: The SDWM Approach. In A.
Cuzzocrea & U. Dayal, eds. Data Warehousing and
Knowledge Discovery. Springer Berlin / Heidelberg,
pp. 15-29.
Cuzzocrea, A. & Fidalgo, R. N., 2012b. SDWM: An
Enhanced Spatial Data Warehouse Metamodel. In M.
Kirikova & J. Stirna, eds. CAiSE Forum. CEUR-
WS.org, pp. 32-39.
Cuzzocrea, A., & Saccà, D., 2012. A Theoretically-Sound
Accuracy/Privacy-Constrained Framework for
Computing Privacy Preserving Data Cubes in OLAP
Environments. In: OTM Conferences 2012, pp. 527-
548.
Fidalgo, R. N. et al., 2004. GeoDWFrame: A Framework
for Guiding the Design of Geographical Dimensional
Schemas. In Y. Kambayashi, M. Mohania, & W. Wöß,
eds. Data Warehousing and Knowledge Discovery.
Springer Berlin / Heidelberg, pp. 26-37.
Glorio, O. & Trujillo, J., 2008. An MDA Approach for the
Development of Spatial Data Warehouses. In I.-Y.
Song, J. Eder, & T. Nguyen, eds. Data Warehousing
and Knowledge Discovery. Springer Berlin /
Heidelberg, pp. 23-32.
Glorio, O. & Trujillo, J., 2009. Designing Data
Warehouses for Geographic OLAP Querying by Using
MDA. In O. Gervasi et al., eds. Computational
Science and Its Applications – ICCSA 2009. Springer
Berlin / Heidelberg, pp. 505-519.
Gray, J. Chaudhuri, S., Bosworth, A., Layman, A.,
Reichart, D., Venkatrao, M., Pellow, F. & Pirahesh H.,
1997. Data Cube: A Relational Aggregation Operator
Generalizing Group-by, Cross-Tab, and Sub Totals.
Data Mining and Knowledge Discovery 1(1), pp. 29-
53.
Malinowski, E. & Zimányi, E., 2009. Advanced Data
Warehouse Design: From Conventional to Spatial and
Temporal Applications (Data-Centric Systems and
Applications), Springer.
Malinowski, E. & Zimányi, E., 2007. Logical
Representation of a Conceptual Model for Spatial Data
Warehouses.
GeoInformatica, 11(4), pp.431-457.
da Silva, J. et al., 2010. Modelling and querying
geographical data warehouses. Information Systems,
35(5), pp.592-614.
Times, Valéria Cesário et al., 2009. A Metamodel for the
Specification of Geographical Data Warehouses. In S.
Kozielski et al., eds. New Trends in Data Warehousing
and Data Analysis. Springer US, pp. 1-22.
Zghal, H. B., Faïz, S. & Ghézala, H. B., 2003. CASME : A
CASE Tool for Spatial Data Marts Design and
Generation. In Proceedings of Design and
Management of Data Warehouses. Berlin, Germany,
pp. 1-11.
ComparativeAnalysisofState-of-the-ArtSpatialDataWarehouseMeta-models-CatchingtheExpressivePowerofSDW
Schemas
309