undoubtedly occur. However, its inclusion in
simulation is problematic, because we do not have
ground truth that can be used. In physical
experimentation, a feedforward model of torsional
windup can be included (Reed et al., 2009), but
simulation of this effect is very difficult because of
the lack of an estimate separate from the
feedforward model itself, which could be used to
generate an error signal for a realistic simulation.
For this reason, treatment of torsional windup has
been deferred until physical experimentation.
ACKNOWLEDGEMENTS
Partial funding for this work was provided by the
U.S. National Institutes of Health (grant no.
R21EB012209).
REFERENCES
Abolhassani, N., Patel, R. and Moallem, M. (2007) Needle
insertion into soft tissue: a survey. Med. Eng. Phys. 29
(4), 413–431.
Alterovitz, R., Goldberg, K. and Okamura, A. (2005)
Planning for steerable bevel-tip needle insertion
through 2D soft tissue with obstacles. In: Proc. IEEE
Int. Conf. Robot. Autom. 2005 pp. 1652–1657.
Alterovitz, R., Goldberg, K. Y., Pouliot, J. and Hsu, I.-C.J.
(2009) Sensorless motion planning for medical needle
insertion in deformable tissues. IEEE Trans. Inform.
Technol. Biomed. 13 (2), 217–225. Available from:
doi:10.1109/TITB.2008.2008393.
Van den Berg, J., Patil, S., Alterovitz, R., Abbeel, P., et al.
(2010) LQG-based planning, sensing, and control of
steerable needles. In: D. Hsu (ed.). Algorithmic
Foundations of Robotics IX. Berlin, Springer-Verlag.
pp. 373–389.
Bernardes, M. C., Adorno, B. V., Poignet, P. and Borges,
G. a. (2012) Semi-automatic needle steering system
with robotic manipulator. In: IEEE Int. Conf. Robot.
Autom., pp. 1595–1600.
Bernardes, M. C., Adorno, B. V., Poignet, P., Zemiti, N.,
et al. (2011) Adaptive path planning for steerable
needles using duty-cycling. In: Proc. IEEE/RSJ Int.
Conf. Intell. Robot. Syst. pp. 2545–2550.
Engh, J. A., Minhas, D. S., Kondziolka, D. and Riviere, C.
N. (2010) Percutaneous intracerebral navigation by
duty-cycled spinning of flexible bevel-tipped needles.
Neurosurgery. 67 (4), 1117–22.
Engh, J. A., Podnar, G., Khoo, S. Y. and Riviere, C. N.
(2006a) Flexible needle steering system for
percutaneous access to deep zones of the brain. In:
Proc. 32nd IEEE Northeast Bioeng. Conf. 2006 pp.
103–104.
Engh, J. A., Podnar, G., Kondziolka, D. and Riviere, C. N.
(2006b) Toward effective needle steering in brain
tissue. In: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. 2006 pp. 559–562.
Frasson, L., Ko, S. Y., Turner, A., Parittotokkaporn, T., et
al. (2010) STING: a soft-tissue intervention and
neurosurgical guide to access deep brain lesions
through curved trajectories. Proc Inst Mech Eng H.
224 (6), 775–788.
Hall, K. (2009) Attitude estimation and maneuvering for
autonomous obstacles avoidance by miniature air
vehicles. Brigham Young University.
Kallem, V. and Cowan, N. J. (2009) Image guidance of
flexible tip-steerable needles. IEEE Trans. Robot. 25
(1), 191–196.
Lindsley, T. A. (2009) Virtual Brain Model software.
(http://www.amc.edu/academic/software.)
National Institute of Neurological Disorders and Stroke
(NINDS) and National Cancer Institute (2000) Report
of the Brain Tumor Progress Review Group. (NIH
Publication Number 01-4902).
Park, W., Kim, J. S., Zhou, Y., Cowan, N. J., et al. (2005)
Diffusion-based motion planning for a nonholonomic
flexible needle model. In: Proc. IEEE Int. Conf.
Robot. Autom. 2005 pp. 4611–4616.
Patil, S. and Alterovitz, R. (2010) Interactive Motion
Planning for Steerable Needles in 3D Environments
with Obstacles. Proc. IEEE Int. Conf. Biomed. Robot.
Biomechatron. pp. 893–899.
St. Pierre, J. (2009) Quaternion Toolbox. 2009.
(http://www.mathworks.com/matlabcentral/fileexchan
ge/1176-quaternion-toolbox.)
Reed, K. B., Okamura, A. M. and Cowan, N. J. (2009)
Modeling and control of needles with torsional
friction. IEEE Trans. Biomed. Eng. 56 (12), 2905–
2916.
Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., et
al. (2006) Stanley: the robot that won the DARPA
Grand Challenge. J. Field Robot. 23 (9), 661–692.
Ünyelioğlu, K. A., Hatipoğlu, C. and Özgüner, Ü. (1997)
Design and Stability Analysis of a Lane Following
Controller ¨. IEEE Trans. Contr. Syst. Technol. 5 (1),
127–134.
Webster III, R. J., Kim, J. S., Cowan, N. J., Chirikjian, G.
S., et al. (2006) Nonholonomic modeling of needle
steering. Int. J. Robot. Res. 25 (5-6), 509–525.
Wood, N., Lehocky, C. A. and Riviere, C. N. (2013)
Algorithm for three-dimensional control of needle
steering via duty-cycled rotation. In: Proc. IEEE Int.
Conf. Mechatron. pp. 1–5.
Wood, N., Shahrour, K., Ost, M. C. and Riviere, C. N.
(2010) Needle steering system using duty-cycled
rotation for percutaneous kidney access. In: Proc.
Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. pp. 5432–
5435.
Xu, J., Duindam, V., Alterovitz, R. and Goldberg, K.
(2008) Motion planning for steerable needles in 3D
environments with obstacles using rapidly-exploring
Random Trees and backchaining. In: Proc. IEEE Int.
Conf. Autom. Sci. Eng. pp. 41–46.
Efficient3DControlforNeedleSteeringusingDuty-cycledRotation
199