Modelling Complex Systems using the Pliant Cognitive Map
József D. Dombi, József Dombi
2013
Abstract
Here, we present a tool for describing and simulating dynamic systems. Our starting point is the aggregation concept, which was developed for multicriteria decision making. Using a continuous logic operator and a proper transformation of the sigmoid function, we build positive and negative effects. From the input data we can calculate the output effect with the help of the aggregation operator. Our approach is similar to that of the Fuzzy Cognitive Map. We shall introduce a new technique that is more efficient than the FCM method. The applicability of PCM is discussed and simulation results are presented.
References
- Axelrod, R. (1976). Structured of Decision: the cognitive maps of political elites. Princeton University press, New Jersey.
- Bittanti, S. and Piroddi, L. (1997). Nonlinear identification and control of a heat exchanger: a neural network approach. J. Franklin Inst., page 135153.
- Dombi, J. (1982). A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets and Systems, 8:149-163.
- Ernst, E.-J. and Hecker, O. (1996). Predictive control of a heat exchanger. Proc. Seminar Theory Applications Model Based Predictive Control, pages 1-18.
- Glykas, M. (2010). Fuzzy Cognitive Maps Advances in Theory, Methodologies, Tools and Applications. SpringerVerlang.
- J. Dombi, J. D. D. (2005). Pliant cognitive map using conjunctive operator. Proceedings of IEEE International Workshop on Soft Computing Applications, page 11.
- Jozsef Dombi, J. D. D. (2005). Cognitive maps based on pliant logic. 16TH European Simulation Symposium, page 63.
- Kosko, B. (1986). Fuzzy entropy and conditioning. Information Sciences, 40:165-174.
- Kosko, B. (1992). Neural Networks and Fuzzy Systems. Prentice Hall, Englewood Cliffs.
- Kosko, B. (1994). Fuzzy Thinking. Flamingo. hardcopy.
- M. Fischer, O. N. and Isermann, R. (2000). Knowledgebased adaptation of neurofuzzy models in predictive control of a heat exchanger. Soft Computing and Intelligent Systems, page 469489.
- Maio, C. D., Fenza, G., Gaeta, M., Loia, V., and Orciuoli, F. (2011). A knowledge-based framework for emergency DSS. Knowl.-Based Syst, 24(8):1372-1379.
- Salmeron, J. L. and Lopez, C. (2012). Forecasting risk impact on ERP maintenance with augmented fuzzy cognitive maps. IEEE Trans. Software Eng, 38(2):439- 452.
- Salmeron, J. L., Vidal, R., and Mena, A. (2012). Ranking fuzzy cognitive map based scenarios with TOPSIS. Expert Syst. Appl, 39(3):2443-2450.
- Stylios, C. D. and Groumpos, P. P. (2004). Modeling complex systems using fuzzy cognitive maps. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 34:155-162.
- Yaman, D. and Polat, S. (2009). A fuzzy cognitive map approach for effect-based operations: An illustrative case. Inf. Sci, 179(4):382-403.
- Zimmermann, H. J. and Zysno, P. (1980). Latent connectives in human decision making. Fuzzy Sets and Systems, 4(1):37-51.
Paper Citation
in Harvard Style
D. Dombi J. and Dombi J. (2013). Modelling Complex Systems using the Pliant Cognitive Map . In Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8565-59-4, pages 506-512. DOI: 10.5220/0004478205060512
in Bibtex Style
@conference{iceis13,
author={József D. Dombi and József Dombi},
title={Modelling Complex Systems using the Pliant Cognitive Map},
booktitle={Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2013},
pages={506-512},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004478205060512},
isbn={978-989-8565-59-4},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Modelling Complex Systems using the Pliant Cognitive Map
SN - 978-989-8565-59-4
AU - D. Dombi J.
AU - Dombi J.
PY - 2013
SP - 506
EP - 512
DO - 10.5220/0004478205060512