REFERENCES
S. W. Cheon and S. H. Chang, May 1993, Application of
neural networks to connectionist expert system for
transient identification in nuclear power plants, Nucl.
Technol., vol. 102, no. 2, pp. 177-191.
Y. Bartal, J. Lin, and R. E. Uhrig, June 1995, Nuclear
power plant transient diagnostics using artificial neural
networks that allow “don’t-know” classifications, Nucl.
Technol., vol. 110, no. 3, pp. 436-449.
M. G. Na, S. M. Lee, S. H. Shin, D. W. Jung, S. P. Kim, J.
H. Jeong, and B. C. Lee, April. 2004, Prediction of
major transient scenarios for severe accidents of
nuclear power plants, IEEE Trans. Nucl. Sci., vol. 51,
no. 2, pp. 313-321.
M. G. Na, W. S. Park, and D. H. Lim, Feb. 2008,
Detection and diagnostics of loss of coolant accidents
using support vector machines, IEEE Trans. Nucl. Sci.,
vol. 55, no. 1, pp. 628-636.
S. H. Lee, Y. G. No, M. G. Na, K.-I. Ahn and S.-Y. Park,
Feb. 2011, Diagnostics of loss of coolant accidents
using SVC and GMDH models, IEEE Trans. Nucl.
Sci., vol. 58, no. 1, pp. 267-276.
I.-Y.Seo, B.-N. Ha, S.-W. Lee, C.-H. Shin, and S.-J. Kim,
2010, Principal components based support vector
regression model for on-line instrument calibration
monitoring in NPPs, Nucl. Eng. Technol., vol. 42, no.
2, pp. 219-230.
E. Zio and R. Bazzo, Aug. 2010, Optimization of the test
intervals of a nuclear safety system by genetic
algorithms, solution clustering and fuzzy preference
assignment, Nucl. Eng. Technol., vol. 42, no. 4, pp.
414-425.
Bo-Suk Yang, Won-Woo Hwang, M.-H. Ko, and S.-J. Lee,
Oct. 2005, Cavitation detection of butterfly valve
using support vector machines, J. Sound Vibr., vol.
287, nos. 1-2, pp. 25-43.
D. F. Specht, 1990, Probabilistic Neural Networks, Neural
Networks, vol. 3, no. 1, pp. 109-118.
A. G. Ivakhnenko, 1968, The group method of data
handling; a rival of method of stochastic
approximation, Soviet Automatic Control, vol. 1, no. 3,
pp. 43-55.
S.J. Farlow, 1984, Self-Organizing Methods in Modeling:
GMDH Type Algorithms, Marcel Dekker, New York.
C. R. Hild, 1998, Development of The Group Method of
Data Handling With Information-based Model
Evaluation Criteria: A New Approach to Statistical
Modeling, Ph.D. Dissertation, Univ. Tennessee,
Knoxville.
P. B. Ferreira and B. R. Upadhyaya, December 1999,
Incipient Fault Detection and Isolation of Sensors and
Field Devices, Nuclear Engineering Dept., Univ.
Tennessee, Knoxville, UTNE/BRU/99-02.
A. G. Ivakhnenko, 1971, Polynomial theory of complex
systems, IEEE Trans. Syst. Man & Cybern, SMC-1, pp.
364-378.
T. Takagi and M. Sugeno, Jan./Feb. 1985, Fuzzy
Identification of Systems and Its Applications to
Modeling and Control, IEEE Trans. Systems, Man,
Cybern., vol. SMC-1, no. 1, pp. 116-132.
S. L. Chiu, 1994, Fuzzy model identification based on
cluster estimation, J. Intell. Fuzzy Systems, vol. 2, pp.
267-278.
V. Kecman, 2001, Learning and Soft Computing,
Cambridge, Massachusetts: MIT Press.
V. Vapnik, 1995, The Nature of Statistical Learning
Theory, New York, Springer.
D. E. Goldberg, 1989, Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading,
Massachusetts: Addison Wesley.
M. Mitchell, 1996, An Introduction to Genetic Algorithms,
Cambridge, Massachusetts: MIT Press.
R. E. Henry et al., 1990, MAAP4 – Modular Accident
Analysis Program for LWR Power Plants, User’s
Manual, Burr Ridge, IL: Fauske, vol. 1-4.
J.W. Hines, B. Rasmussen, Sept. 2005, Online sensor
calibration monitoring uncertainty estimation, Nucl.
Technol., vol. 151, pp. 281-288.
R. Tibshirani, 1996, A comparison of some error estimates
for neural network models, Neural Computation, vol.
8, pp. 152-163.
(a) relative error
(b) uncertainty analysis
(c) estimated break size
Figure 6: Prediction of hot-leg LOCA break size.
0.00.20.40.60.81.01.21.41.61.8
-20
-15
-10
-5
0
5
10
15
20
training data
verification data
test data
break size (m
2
)
relative error (%)
0 5 10 15 20 25 30
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
prediction size
upper interval
lower interval
test case
LOCA size (m
2
)
8 9 10 11
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
target (training)
estimated (training)
target (verification)
estimated (verification)
target (test)
estimated (test)
break size
m
2
estimated break size (m
2
)
0.40 0.42 0.44 0.46 0.48 0.50
0.40
0.42
0.44
0.46
0.48
0.50
UncertaintyAnalysisoftheLOCABreakSizePredictionModelusingGMDH
225