Towards an EDSL to Enhance Good Modelling Practice for Non-linear Stochastic Discrete Dynamical Models - Application to Plant Growth Models

Benoit Bayol, Yuting Chen, Paul-Henry Cournède

2013

Abstract

A computational formalism is presented that structures a C++ library which aims at the modelling, simulation and statistical analysis of stochastic non-linear discrete dynamical system models. Applications concern the development and analysis of general plant growth models.

References

  1. Baey, C., Didier, A., Li, S., Lemaire, S., Maupas, F., and Cournède, P.-H. (2012). Evaluation of the Predictive Capacity of Five Plant Growth Models for Sugar Beet. In Kang, M., Dumont, Y., and Guo, Y., editors, Plant Growth Modeling, Simulation, Visualization and Applications - PMA12, pages 30-37, Shanghai, China. IEEE.
  2. Brisson, N., Gary, C., Justes, E., Roche, R., Mary, B., Ripoche, D., Zimmer, D., Sierra, J., Bertuzzi, P., Burger, P., Bussiére, F., Cabidoche, Y., Cellier, P., Debaeke, P., Gaudillére, J., Hènault, C., Maraux, F., Seguin, B., and Sinoquet, H. (2003). An overview of the crop model STICS. European Journal of Agronomy, 18:309-332.
  3. Campillo, F. and Rossi, V. (2009). Convolution Particle Filter for Parameter Estimation in General State-Space Models. IEEE Transactions in Aerospace and Electronics., 45(3):1063-1072.
  4. Carson, E. and Cobelli, C. (2001). Modelling Methodology for Physiology and Medicine. Academic Press, San Diego (US).
  5. Chen, Y., Bayol, B., Loi, C., Trevezas, S., and Cournède, P.- H. (2012). Filtrage par noyaux de convolution itératif. In Actes des 44émes Journèes de Statistique JDS2012, Bruxelles 21-25 Mai 2012.
  6. Chen, Y. and Cournède, P.-H. (2012). Assessment of parameter uncertainty in plant growth model identification. In Kang, M., Dumont, Y., and Guo, Y., editors, Plant growth Modeling, simulation, visualization and their Applications (PMA12). IEEE Computer Society (Los Alamitos, California).
  7. Chen, Y., Trevezas, S., and Cournède, P.-H. (2013). Iterative convolution particle filtering for nonlinear parameter estimation and data assimilation with application to crop yield prediction. In Society for Industrial and Applied Mathematics (SIAM): Control & its Applications,San Diego, USA.
  8. Cournède, P.-H., Letort, V., Mathieu, A., Kang, M.-Z., Lemaire, S., Trevezas, S., Houllier, F., and de Reffye, P. (2011). Some parameter estimation issues in functional-structural plant modelling. Mathematical Modelling of Natural Phenomena, 6(2):133-159.
  9. de Reffye, P., Heuvelink, E., Barthélémy, D., and Cournède, P.-H. (2008). Plant growth models. In Jorgensen, S. and Fath, B., editors, Ecological Models. Vol. 4 of Encyclopedia of Ecology (5 volumes), pages 2824-2837. Elsevier, Oxford.
  10. Hundt, R. (2011). Loop recognition in c++/java/go/scala. In Proceedings of Scala Days 2011.
  11. Julier, S., Uhlmann, J., and Durrant-Whyte, H. (2000). A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45(3):477-482.
  12. Kocis, L. and Whiten, W. J. (1997). Computational investigations of low-discrepancy sequences. ACM Trans. Math. Softw., 23(2):266-294.
  13. Matsumoto, M. and Nishimura, T. (1998). Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8(1):3-30.
  14. Trevezas, S. and Cournède, P.-H. (2013). A sequential monte carlo approach for mle in a plant growth model. Journal of Agricultural, Biological, and Environmental Statistics, In press.
  15. Van Waveren, R., Groot, S., Scholten, H., Van Geer, F., Wosten, H., Koeze, R., and Noort, J. (1999). Good modelling practice handbook. Technical Report 99- 05, STOWA, Utrecht, RWS-RIZA, Lelystad, The Netherlands.
  16. Vos, J., Evers, J. B., Buck-Sorlin, G. H., Andrieu, B., Chelle, M., and de Visser, P. H. B. (2010). Functionalstructural plant modelling: a new versatile tool in crop science. Journal of Experimental Botany, 61(8):2101- 2115.
  17. Wu, Q., Cournède, P.-H., and Mathieu, A. (2012). An efficient computational method for global sensitivity analysis and its application to tree growth modelling. Reliability Engineering & System Safety, 107:35-43.
  18. Zeigler, B., Song, H. S., Kim, T. G., and Praehofer, H. (1995). Devs framework for modelling, simulation, analysis, and design of hybrid systems. In In Proceedings of HSAC, pages 529-551. Springer-Verlag.
Download


Paper Citation


in Harvard Style

Bayol B., Chen Y. and Cournède P. (2013). Towards an EDSL to Enhance Good Modelling Practice for Non-linear Stochastic Discrete Dynamical Models - Application to Plant Growth Models . In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-8565-69-3, pages 132-138. DOI: 10.5220/0004481101320138


in Bibtex Style

@conference{simultech13,
author={Benoit Bayol and Yuting Chen and Paul-Henry Cournède},
title={Towards an EDSL to Enhance Good Modelling Practice for Non-linear Stochastic Discrete Dynamical Models - Application to Plant Growth Models},
booktitle={Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2013},
pages={132-138},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004481101320138},
isbn={978-989-8565-69-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Towards an EDSL to Enhance Good Modelling Practice for Non-linear Stochastic Discrete Dynamical Models - Application to Plant Growth Models
SN - 978-989-8565-69-3
AU - Bayol B.
AU - Chen Y.
AU - Cournède P.
PY - 2013
SP - 132
EP - 138
DO - 10.5220/0004481101320138