Comparison of Active Sensors for 3D Modeling of Indoor Environments

Abdennour Aouina, Michel Devy, Antonio Marin-Hernandez

2013

Abstract

3D perception has known impressive advances in the past 3 years; it corresponds to several technological improvements, plus many new development teams providing open sources. First of all, researchers in Robotics and 3D Perception have made profit of the Kinect sensor; some works were already devoted to 3D cameras, using more expensive Time-of-Flight optical devices. Another common way to acquire dense 3D data, is by scanning the environment by a laser range finder (LRF); as for example, the Hokuyo tilting LRF integrated on the PR2 robot by Willow Garage. To build a dense geometrical model of an indoor environment, several sensors could be selected in order to acquire 3D data. This paper aims at giving some insights on this selection, presenting some pros and cons for Kinect, Hokuyo and ToF optical sensors.

References

  1. An, S.-Y., Lee, L.-K., and Oh, S.-Y. (2012). Fast incremental 3d plane extraction from a collection of 2d line segments for 3d mapping. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 4530 -4537.
  2. Dellaert, F. and Kaess, M. (2006). Square root sam: Simultaneous localization and mapping via square root information smoothing. The International Journal of Robotics Research, 25(12):1181-1203.
  3. Douillard, B., Underwood, J., Melkumyan, N., Singh, S., Vasudevan, S., Brunner, C., and Quadros, A. (2010). Hybrid elevation maps: 3d surface models for segmentation. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 1532 -1538.
  4. Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved techniques for grid mapping with raoblackwellized particle filters. Robotics, IEEE Transactions on, 23(1):34-46.
  5. Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2012). RGB-D mapping: Using kinect-style depth cameras for dense 3D modeling of indoor environments. International Journal of Robotics Research (IJRR), 31(5):647-663.
  6. Khoshelham, K. and Elberink, S. O. (2012). Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors, 12(2):1437-1454.
  7. Klaess, J., Stueckler, J., and Behnke, S. (2012). Efficient mobile robot navigation using 3d surfel grid maps. Robotics; Proceedings of ROBOTIK 2012; 7th German Conference on, pages 1 -4.
  8. Lai, K., Bo, L., Ren, X., and Fox, D. (2011). A largescale hierarchical multi-view rgb-d object dataset. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 1817 -1824.
  9. May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., and Hertzberg, J. (2009). Threedimensional mapping with time-of-flight cameras. J. Field Robot., 26(11-12):934-965.
  10. Newcombe, R., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011). Kinectfusion: Real-time dense surface mapping and tracking. In Proc. IEEE Int. Symp. on Mixed and Augmented Reality (ISMAR), Basel (Switzerland).
  11. Nüchter, A. and Hertzberg, J. (2008). Towards semantic maps for mobile robots. Robot. Auton. Syst., 56(11):915-926.
  12. Rusu, R., Marton, Z., Blodow, N., Holzbach, A., and Beetz, M. (2009). Model-based and learned semantic object labeling in 3d point cloud maps of kitchen environments. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 3601 -3608.
  13. Smisek, J., Jancosek, M., and Pajdla, T. (2011). 3d with kinect. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 1154 -1160.
  14. Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. (2012). A benchmark for the evaluation of rgb-d slam systems. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 573 -580.
  15. Trevor, A., Rogers, J., and Christensen, H. (2012). Planar surface slam with 3d and 2d sensors. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 3041 -3048.
  16. Wolf, D. and Sukhatme, G. (2008). Semantic mapping using mobile robots. Robotics, IEEE Transactions on, 24(2):245 -258.
Download


Paper Citation


in Harvard Style

Aouina A., Devy M. and Marin-Hernandez A. (2013). Comparison of Active Sensors for 3D Modeling of Indoor Environments . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-70-9, pages 442-449. DOI: 10.5220/0004485004420449


in Bibtex Style

@conference{icinco13,
author={Abdennour Aouina and Michel Devy and Antonio Marin-Hernandez},
title={Comparison of Active Sensors for 3D Modeling of Indoor Environments},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2013},
pages={442-449},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004485004420449},
isbn={978-989-8565-70-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Comparison of Active Sensors for 3D Modeling of Indoor Environments
SN - 978-989-8565-70-9
AU - Aouina A.
AU - Devy M.
AU - Marin-Hernandez A.
PY - 2013
SP - 442
EP - 449
DO - 10.5220/0004485004420449