neighbors and find the best global reference frame.
All robots transform their maps to this global frame
and finally they obtain a common global map.
The information used is RGB-D data. This makes
possible to obtain accurate 3D information of the
scene. The huge amount of data managed introduces
the necessity of using 2D descriptors in some steps of
the matching process. The real results presented show
the goodness of the computed map.
ACKNOWLEDGEMENTS
This work was supported by projects Ministerio
de Econom
´
ıa y Competitividad / Uni
´
on Europea
DPI2009-08126, DPI2012-32100.
REFERENCES
Alriksson, P. and Rantzer, A. (2006). Distributed Kalman
filtering using weighted averaging. In Int. Symposium
on Mathematical Theory of Networks and Systems,
Kyoto, Japan.
Bailey, T., Nebot, E. M., Rosenblatt, J. K., and Durrant-
Whyte, H. (2000). Data association for mobile robot
navigation: a graph theoretic approach. In IEEE Int.
Conf. on Robotics and Automation, pages 2512–2517,
San Francisco, USA.
Bay, H., Tuytelaars, T., and Gool, L. V. (2006). Surf:
Speeded up robust features. In European Conference
on Computer Vision, pages 404–417.
Besl, P. J. and Mckay, H. D. (1992). A method for regis-
tration of 3-D shapes. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 14(2):239–256.
Bullo, F., Cort
´
es, J., and Mart
´
ınez, S. (2009). Distributed
Control of Robotic Networks. Applied Mathemat-
ics Series. Princeton University Press. Electronically
available at http://coordinationbook.info.
Calafiore, G. and Abrate, F. (2009). Distributed linear es-
timation over sensor networks. International Journal
of Control, 82(5):868–882.
Carpin, S. (2008). Fast and accurate map merging for multi-
robot systems. Autonomous Robots, 25(3):305–316.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24(6):381–395.
Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D., and
Stewart, B. (2006). Distributed multirobot exploration
and mapping. IEEE Proceedings, 94(7):1325–1339.
Gil, A., Reinoso, O., Ballesta, M., and Julia, M. (2009).
Multi-robot visual SLAM using a rao-blackwellized
particle filter. Robotics and Autonomous Systems,
58(1):68–80.
Kaess, M. and Dellaert, F. (2009). Covariance recov-
ery from a square root information matrix for data
association. Robotics and Autonomous Systems,
57(12):1198–1210.
Lynch, K. M., Schwartz, I. B., Yang, P., and Freeman,
R. A. (2008). Decentralized environmental model-
ing by mobile sensor networks. IEEE Transactions
on Robotics, 24(3):710–724.
Muja, M. and Lowe, D. G. (2009). Fast approximate near-
est neighbors with automatic algorithm configuration.
In VISAPP International Conference on Computer Vi-
sion Theory and Applications, pages 331–340.
Neira, J. and Tard
´
os, J. D. (2001). Data association
in stochastic mapping using the joint compatibility
test. IEEE Transactions on Robotics and Automation,
17(6):890–897.
Olfati-Saber, R. (2007). Distributed Kalman filtering for
sensor networks. In IEEE Conf. on Decision and Con-
trol, pages 5492–5498, New Orleans, LA.
Parker, L. E. (2000). Current state of the art in distributed
robotic systems. In Parker, L. E., Bekey, G., and
Barhen, J., editors, Distributed Autonomous Robotic
Systems 4, pages 3–12. Springer Verlag.
Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T.,
Leibs, J., Wheeler, R., and Ng, A. Y. (2009). ROS: an
open-source Robot Operating System. In ICRA Work-
shop on Open Source Software.
Sagues, C., Murillo, A. C., Guerrero, J. J., Goedem
´
e, T.,
Tuytelaars, T., and Gool, L. V. (2006). Localization
with omnidirectional images using the 1D radial tri-
focal tensor. In IEEE Int. Conf. on Robotics and Au-
tomation, pages 551–556, Orlando, USA.
Thrun, S. and Liu, Y. (2003). Multi-robot SLAM with
sparse extended information filters. In Int. Symposium
of Robotics Research, pages 254–266, Sienna, Italy.
Xiao, L., Boyd, S., and Lall, S. (2005). A scheme for ro-
bust distributed sensor fusion based on average con-
sensus. In Information Processing in Sensor Net-
works, 2005. IPSN 2005. Fourth International Sym-
posium on, pages 63–70.
ICINCO2013-10thInternationalConferenceonInformaticsinControl,AutomationandRobotics
384