mance. Additionally, the other research direction is to
use these ideas for other than RDF processing, e.g.,
SQL.
ACKNOWLEDGEMENTS
The authors would like to thank the GACR 103/13/
08195, GAUK 277911, GAUK 472313, and SVV-
2013-267312 which supported this paper.
REFERENCES
Albutiu, M.-C., Kemper, A., and Neumann, T. (2012).
Massively parallel sort-merge joins in main memory
multi-core database systems. Proc. VLDB Endow.,
5(10):1064–1075.
Bednarek, D., Dokulil, J., Yaghob, J., and Zavoral, F.
(2012a). Bobox: Parallelization Framework for Data
Processing. In Advances in Information Technology
and Applied Computing.
Bednarek, D., Dokulil, J., Yaghob, J., and Zavoral, F.
(2012b). Data-Flow Awareness in Parallel Data Pro-
cessing. In 6th International Symposium on Intelligent
Distributed Computing - IDC 2012. Springer-Verlag.
Broekstra, J., Kampman, A., and Harmelen, F. v. (2002).
Sesame: A generic architecture for storing and query-
ing RDF and RDF schema. In ISWC ’02: Proceed-
ings of the First International Semantic Web Confer-
ence on The Semantic Web, pages 54–68, London,
UK. Springer-Verlag.
Cermak, M., Dokulil, J., Falt, Z., and Zavoral, F. (2011).
SPARQL Query Processing Using Bobox Framework.
In SEMAPRO 2011, The Fifth International Confer-
ence on Advances in Semantic Processing, pages 104–
109. IARIA.
Cieslewicz, J., Berry, J., Hendrickson, B., and Ross, K. A.
(2006). Realizing parallelism in database operations:
insights from a massively multithreaded architecture.
In Proceedings of the 2nd international workshop on
Data management on new hardware, DaMoN ’06,
New York, NY, USA. ACM.
DeWitt, D. J., Naughton, J. F., Schneider, D. A., and Se-
shadri, S. (1992). Practical skew handling in parallel
joins. In Proceedings of the 18th International Con-
ference on Very Large Data Bases, VLDB ’92, pages
27–40, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.
Dittrich, J.-P. and Seeger, B. (2002). Progressive merge
join: A generic and non-blocking sort-based join al-
gorithm. In VLDB, pages 299–310.
Dittrich, J.-P., Seeger, B., Taylor, D. S., and Widmayer, P.
(2003). On producing join results early. In Proceed-
ings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database sys-
tems, PODS ’03, pages 134–142, New York, NY,
USA. ACM.
Falt, Z., Bednarek, D., Cermak, M., and Zavoral, F. (2012a).
On Parallel Evaluation of SPARQL Queries. In
DBKDA 2012, The Fourth International Conference
on Advances in Databases, Knowledge, and Data Ap-
plications, pages 97–102. IARIA.
Falt, Z., Bulanek, J., and Yaghob, J. (2012b). On Parallel
Sorting of Data Streams. In ADBIS 2012 - 16th East
European Conference in Advances in Databases and
Information Systems.
Falt, Z., Cermak, M., Dokulil, J., and Zavoral, F. (2012c).
Parallel sparql query processing using bobox. Inter-
national Journal On Advances in Intelligent Systems,
5(3 and 4):302–314.
Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran,
S. (1999). Cache-Oblivious Algorithms. In FOCS,
pages 285–298.
Gordon, M. I., Thies, W., and Amarasinghe, S. (2006). Ex-
ploiting coarse-grained task, data, and pipeline paral-
lelism in stream programs. SIGARCH Comput. Archit.
News, 34(5):151–162.
Groppe, J. and Groppe, S. (2011). Parallelizing join com-
putations of sparql queries for large semantic web
databases. In Proceedings of the 2011 ACM Sympo-
sium on Applied Computing, SAC ’11, pages 1681–
1686, New York, NY, USA. ACM.
Hua, K. A. and Lee, C. (1991). Handling data skew in mul-
tiprocessor database computers using partition tuning.
In Proceedings of the 17th International Conference
on Very Large Data Bases, VLDB ’91, pages 525–
535, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.
Jena (2013). Jena – a semantic web framework for Java.
Available at: http://jena.apache.org/, [Online; Ac-
cessed February 4, 2013].
Li, W., Gao, D., and Snodgrass, R. T. (2002). Skew han-
dling techniques in sort-merge join. In Proceedings of
the 2002 ACM SIGMOD international conference on
Management of data, pages 169–180. ACM.
Liu, B. and Rundensteiner, E. A. (2005). Revisiting
pipelined parallelism in multi-join query processing.
In Proceedings of the 31st international conference
on Very large data bases, VLDB ’05, pages 829–840.
VLDB Endowment.
Lu, H., Tan, K.-L., and Sahn, M.-C. (1990). Hash-based
join algorithms for multiprocessor computers with
shared memory. In Proceedings of the sixteenth in-
ternational conference on Very large databases, pages
198–209, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.
Ming, M. M., Lu, M., and Aref, W. G. (2004). Hash-merge
join: A non-blocking join algorithm for producing fast
and early join results. In In ICDE, pages 251–263.
Prud’hommeaux, E. and Seaborne, A. (2008). SPARQL
Query Language for RDF. W3C Recommendation.
Schmidt, M., Hornung, T., Lausen, G., and Pinkel, C.
(2008). Sp2bench: A sparql performance benchmark.
CoRR, abs/0806.4627.
Schneider, D. A. and DeWitt, D. J. (1989). A performance
evaluation of four parallel join algorithms in a shared-
nothing multiprocessor environment. SIGMOD Rec.,
18(2):110–121.
Vinther, K. (2006). The Funnelsort Project. Available
at: http://kristoffer.vinther.name/projects/funnelsort/,
[Online; Accessed February 4, 2013].
Virtuoso (2013). Virtuoso data server. Available at:
http://virtuoso.openlinksw.com, [Online; Accessed
February 4, 2013].
DATA2013-2ndInternationalConferenceonDataManagementTechnologiesandApplications
300