5 CONCLUSIONS
A particle measurement method for periodic emis-
sion tests based on light scattering has been presented.
Care must be taken that noise from the incident light
(e.g. due to mode hopping for laser sources) is min-
imized to achieve highest possible resolutions. In
combination with a sensitive detection system reso-
lutions 100 times better than that of current garage
opacity meters can be achieved at comparable costs.
The temporal resolution (100 Hz) is by far sufficient
for tracing exhaust emissions. Thus light scattering
devices are suitable for the exhaust measurement of
vehicles with state-of-the-art aftertreatment systems.
Further work will focus on the conversion of these re-
sults to established measures like opacity in order to
ensure the applicability of the determined formulas.
REFERENCES
Ascente, T. (2007). Laser diode intensity noise induced by
mode hopping. Rom. Rep. Phys., 59(1):87–92.
Axmann, H. and Eichberger, B. (2012). Circuit configura-
tion for evaluating photoelectric measurements. Euro-
pean Patent Application EP2501036A1.
Bohren, C. F. and Huffman, D. R. (1998). Absorption and
scattering of light by small particles. Wiley, New
York.
Boulter, P., Buekenhoudt, P., Stricker, P., et al. (2011). TED-
DIE – A new roadworthiness emission test for diesel
vehicles involving NO, NO
2
, and PM measurements.
Final report, CITA.
Chakrabarty, R. K., Moosm¨uller, H., Arnott, W. P., et al.
(2007). Light scattering and absorption by fractal-like
carbonaceous chain aggregates: comparison of theo-
ries and experiment. Appl. Optics, 46(28):6990–7006.
European Commission (2010). Commission Directive
2010/48/EU of 5 July 2010 adapting to technical
progress Directive 2009/40/EC of the European Par-
liament and of the Council on roadworthiness tests for
motor vehicles and their trailers. OJ L 173:42-72.
Forrest, S. R. and Witten, T. A. (1979). Long-range correla-
tions in smoke-particle aggregates. J. Phys. A: Math.
Gen., 12(5):L109–L117.
German Association of manufacturers and importers of Au-
tomobile Service Equipment (2010). Diesel-AU: Die
Endrohrpr¨ufung ist unerl¨asslich. Press Info. 4/10.
Giechaskiel, B., Schiefer, E., Schindler, W., Axmann, H.,
et al. (2013). Overview of soot emission measure-
ments instrumentation: From smoke and filter mass
to particle number. SAE Int. J. Engines, 6(1):10–22.
G¨orner, P., Bemer, D., and Fabri´es, J. (1995). Photometer
measurement of polydisperse aerosols. J. Aerosol Sci.,
26(8):1281–1302.
Heumier, T. A. and Carlsten, J. L. (1993). Detecting mode
hopping in semiconductor lasers by monitoring inten-
sity noise. IEEE J. Quantum Elect., 29(11):2756–
2761.
Hull, P., Shepherd, I., and Hunt, A. (2004). Modeling
light scattering from diesel soot particles. Appl. Opt.,
43(17):3433–3441.
IARC, World Health Organization (2012). Diesel engine
exhaust carcinogenic. Press Release No. 213.
Kittelson, D. B. (1998). Engines and nanoparticles: A re-
view. J. Aerosol Sci., 29(5/6):575–588.
Lapuerta, M., Ballesteros, R., and Martos, F. (2006). A
method to determine the fractal dimension of diesel
soot agglomerates. J. Colloid Interface Sci., 303:149–
158.
Liu, Z., Swanson, J., Kittelson, D. B., and Pui, D. Y. H.
(2012). Comparison of methods for online measure-
ment of diesel particulate matter. Environ. Sci. Tech-
nol., 46(11):6127–6133.
Mamakos, A., Martini, G., and Manfredi, U. (2013). As-
sessment of the legislated particle number measure-
ment procedure for a euro 5 and a euro 6 compliant
diesel passenger cars under regulated and unregulated
conditions. J. Aerosol Sci., 55:31–47.
Mie, G. (1908). Beitr¨age zur Optik tr¨uber Medien, speziell
kolloidaler Metall¨osungen. Ann. Phys., 25(3):377–
445.
Mollenhauer, K. and Tsch¨oke, H. (2007). Handbuch Diesel-
motoren. Springer, Berlin Heidelberg, 3
rd
edition.
Nickel, C., Kaminski, H., Hellack, B., Quass, U., et al.
(2013). Size resolved particle number emission fac-
tors of motorway traffic differentiated between heavy
and light duty vehicles. Aerosol. Air Qual. Res.,
13(2):450–461.
Norris, J. O. W. (2005). Low emission diesel research
CP17/18/770. Phase 3 – Report, Vehicle and Oper-
ator Services Agency (VOSA).
Pralgauskait˙a, S., Palenskis, V., Matukas, J., et al. (2013).
Analysis of mode-hopping effect in Fabry-P´erot
multiple-quantum well laser diodes via low frequency
noise investigation. Solid State Electron., 79:104–110.
Reinisch, T. (2009).
¨
Uber die Morphologie von Rußpar-
tikeln von Verbrennungskraftmotoren im Hinblick auf
Partikelanzahlmessung. Bachelor Thesis, Graz, Uni-
versity of Technology.
Ristovski, Z. D., Miljevic, B., Surawski, N. C., Morawska,
L., et al. (2012). Respiratory health effects of diesel
particulate matter. Respirology, 17(2):201–212.
Sorensen, C. (2001). Light scattering by fractal aggregates:
A review. Aerosol Sci. Technol., 35(2):648–687.
Swanson, J. J., Watts, W. F., Newman, R. A., et al. (2013).
Simultaneous reduction of particulate matter and NO
x
emissions using 4-way catalyzed filtration systems.
Environ. Sci. Technol., 47(9):4521–4527.
van de Hulst, H. C. (1981). Light scattering by small parti-
cles. Dover Publications, New York.
VdT
¨
UV and DEKRA (2010). Emission Check 2010 Teil 2
– Diesel.
Webb, C. E. and Jones, J. D. C., editors (2004). Hand-
book of Laser Technology and Applications, volume
I: Principles. Institute of Physics Publishing, Bristol,
Philadelphia.
ICINCO2013-10thInternationalConferenceonInformaticsinControl,AutomationandRobotics
462