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Abstract: Data cleansing is growing in importance among both public and private organisations, mainly due to the rel-
evant amount of data exploited for supporting decision making processes. This paper is aimed to show how
model-based verification algorithms (namely, model checking) can contribute in addressing data cleansing
issues, furthermore a new benchmark problem focusing on the labour market dynamic is introduced. The
consistent evolution of the data is checked using a model defined on the basis of domain knowledge. Then,
we formally introduce the concept ofuniversal cleanser, i.e. an object which summarises the set of all cleans-
ing actions for each feasible data inconsistency (according to a given consistency model), then providing an
algorithm which synthesises it. The universal cleanser can be seen as a repository of corrective interventions
useful to develop cleansing routines. We applied our approach to a dataset derived from the Italian labour
market data, making the whole dataset and outcomes publicly available to the community, so that the results
we present can be shared and compared with other techniques.

1 INTRODUCTION

In the last two decades, the diffusion of Informative
Systems has increased at an explosive rate, contribut-
ing to the definition and realisation of many IT ser-
vices, also in the public sector. As a consequence, the
amount of data that organisations are now handling
is growing apace. Such data can contribute to anal-
yse, observe and explain social, economic and busi-
ness phenomena, as well as to assess decision mak-
ing activities, e.g. the evaluation of active policies,
resource allocation, service design and improvement.
However, it is well known that the quality of the data
is frequently very low (Fayyad et al., 2003) and, due
to the “garbage in, garbage out” principle, dirty data
strongly affect the information derived from them.
Hence, data cleansing is a mandatory step before us-
ing data for decision making purposes.

Data quality and cleansing issues have been ad-
dressed in many fields of the literature, by dealing
with several quality dimensions, see (Batini and Scan-
napieco, 2006). Here we focus onconsistency, which
takes into account the violation of semantic rules de-
fined over a set of data items. This work concentrates
on information about a given subject, object or phe-
nomena, observed at multiple sampled time points:
the result is a longitudinal dataset, also known as
panel data, see (Singer and Willett, 2003; Bartolucci
et al., 2012) for details, which allows one to study

how data change along the time.
To this regard, let us consider the dataset showed

in Tab. 1 modelling a cruise ship travel plan, as pre-
sented by (Mezzanzanica et al., 2012). The ship trav-
els by sea and stops at the port of calls (intermediate
destinations). The harbour regulations require a noti-
fication prior to entry into port. In this scenario, we
suppose that a ship is required to perform acheckin
notification when entering a harbour and acheckout
when exiting. Looking at Tab. 1, one can note that the
departure date from Lisbon is missing, since a check-
out from Lisbon should be done prior to entering in
Barcelona. In this sense, the events sequence mod-
elling the travel of the ship S01 can be considered as
inconsistent.

Table 1: Travel Plan of a Cruise Ship.

ShipID City Date Event Type
S01 Venice 12th April 2011 checkin
S01 Venice 15th April 2011 checkout
S01 Lisbon 30th April 2011 checkin
S01 Barcelona 5th May 2011 checkin
S01 Barcelona 8th May 2011 checkout
. . . . . . . . . . . .

One can argue that ships are usually moored in
the harbour for 3 days, hence a cleansing activity
could set the missing departure date from Lisbon on
the 3rd May. Unfortunately, there is no certainty of
having guessed the real value, and having a consis-
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tent dataset is required to obtain effective statistics
(e.g., missing dates may have unpredictable effects
when computing an indicator likeactive travel days/
overall cruise duration).
The aims of this work are twofold: (1) we describe
how a model-based reasoning (i.e., model checking)
can be used to describe and verify the consistent evo-
lution of the data along the time. Then, we show how
such model can be exploited to synthesise aUniver-
sal Cleanser: an object summarising the set ofall
feasible cleansing actions for each feasible data in-
consistency; (2) We present a real-world problem in
the labour market context, providing both the source
datasets and the results publicly available to the com-
munity, so that the data can be shared and compared
with other studies.

2 RELATED WORK

Data quality and cleansing problems have widely
been addressed, a lot of works cross the boundaries of
different research fields, consequently it is not an easy
task framing them into a holistic classification. Fur-
thermore, there is no commonly agreed formal defini-
tion of data cleansing (Maletic and Marcus, 2010).

To the best of our knowledge not any other works
deal with database consistency issues related to (ar-
bitrarily long) sequences. Several existing works fo-
cus on constraint among attribute sets (single tuple
scope), others concentrate on entity resolution prob-
lems that requires a pairwise comparison (two tuples
scope). Furthermore, the finite state system approach
proposed in this paper can effectively capture the con-
sistency semantic of several historical or longitudinal
data.

In the data quality domain accessing the real data
is rarely feasible due to economic or practical con-
straints, indeed the cleansing activities can be per-
formed only relying on domain knowledge. For the
same reason this paper focuses on the consistency di-
mension, while dimensions that require access to the
real data (like accuracy) are not considered.

In this section we focused on works that identifies
and fix inconsistencies using domain knowledge. We
can distinguish among the following paradigms:

Rules based Error Detection and Correctional-
low users to specify rules and transformation needed
to clean the data, a survey can be found in (Maletic
and Marcus, 2010). Specifying rules can be a very
complex and time consuming task. Furthermore, both
bug fixing and maintenance along the time require a
non negligible effort.

Several approaches focus on integrity constraints

to identify errors, however they cannot address com-
plex errors or several inconsistencies commonly
found in real data (Fan, 2008; Maletic and Marcus,
2000). Other constraint types have been identified
in the literature: multivalued dependencies, embed-
ded multivalued dependencies, and conditional func-
tional dependencies. Nevertheless, according to Vardi
in (Vardi, 1987) there are still semantic constraints
that cannot be described by the latter. E.g., the con-
sistency model described in Sec. 6.

Machine Learning Methods can be used for er-
ror localisation and correction. These approaches ex-
ploit learning algorithms. After the training an al-
gorithm can be used to identify errors and inconsis-
tencies. Possible techniques and approaches are: un-
supervised learning, statistical methods, data profil-
ing, range and threshold checking, pattern recogni-
tion, clustering methodologies (Mayfield et al., 2009).
The training phase requires a satisfactory dataset to
be identified, however a clean dataset that can be used
as a reference is rarely available in the data quality
field. Therefore, human feedbacks are required to im-
prove the machine learning performances. Since the
underlying model built during the learning phase can-
not be easily accessed and interpreted by domain ex-
perts (e.g., an impact evaluation of the cleansing ac-
tivities can be hardly done), in this paper we explore a
different approach where the consistency models are
explicitly stated and verified.

Record Linkage (known asobject identification,
record matching, merge-purge problem) aims to bring
together corresponding records from two or more data
sources or finding duplicates within the same one.
The record linkage problem falls outside the scope
of this paper, therefore it is not further investigated.
A survey can be found in (Batini and Scannapieco,
2006; Elmagarmid et al., 2007; Maletic and Marcus,
2010).

Consistent Query Answering works, e.g.
(Bertossi, 2006), focus on techniques for finding out
consistent answersfrom inconsistent data, i.e. the
focus is on automatic query modifications and not
on fixing the source data. An answer is considered
consistent when it appears in every possible repair
of the original database. Semantic constraints are
expressed using functional dependencies. The
functional dependencies works at the attribute level,
therefore they are not well suited to manage con-
sistency issues specific of longitudinal or historical
data. Furthermore, already with two Functional
Dependencies the problem of computing Consistent
Query Answers involving aggregate queries becomes
NP-complete (Bertossi, 2006). In (Bertossi et al.,
2011) an approach similar to consistent query
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answering exploits “matching dependencie”s and
“matching functions” instead of functional depen-
dencies. Matching dependencies were introduced as
declarative rules for data cleaning and entity resolu-
tion. Enforcing a matching dependency on a database
instance identifies the values of some attributes for
two tuples, provided that the values of some other
attributes are sufficiently similar (Bertossi et al.,
2011). Matching functions implement the semantic
through which different tuples referring to the same
entity are made equal. The latter work focuses on
data cleansing where mostly record linkage and
entity resolution problems are to be addressed. Such
problems are not considered in this paper. It is worth
to note that the partial order of semantic domination
among (cleansed) instances described in (Bertossi
et al., 2011), although conceived for a different
scenario, can contribute to the process of selecting a
correction among a set of several ones i.e., the policy
making task briefly introduced in Sec. 5. Due to lack
of space, the policy selection process is not further
investigated in this paper.

Other works in the field of automata and for-
mal verification theory are now shortly referenced.
The application of automata theory for inference pur-
poses was deeply investigated in (Vardi, 1992) in
the database domain. The problem of checking (and
repairing) several integrity constraint types has been
analysed in (Afrati and Kolaitis, 2009). Unfortu-
nately most of the approaches adopted can lead to
hard computational problems. Formal verification
techniques were applied to databases, to formally
prove the termination of triggers (Choi et al., 2006),
for semistructured data retrieval (Neven, 2002), and
to solve queries on semistructured data (Dovier and
Quintarelli, 2009).

Finally, many data cleansing toolkits have been
proposed for implementing, filtering, and transform-
ing rules over data. A detailed survey of those tools is
outside the scope of the paper. The interested reader
can refer to (Maletic and Marcus, 2010).

3 BACKGROUNDS

Model checking (see e.g., (Clarke et al., 1999)) is
a hardware/software verification technique to verify
the correctness of a given system. The system is de-
scribed in terms ofstate variables, whose evaluation
determines a state, andtransition relationsbetween
states, which specify how the system can move from
a state to the next one as a consequence of a given in-
put action. Focusing onexplicitmodel checking tech-
niques, a model checker verifies whether a state tran-

sition system always satisfies a property by perform-
ing an exhaustive search in the system state-space
(i.e., the set of all the feasible system states).

The system is typically modelled as a Finite State
System, which can be formally defined as follows.

Definition 1 (Finite State System). A Finite State
System(FSS) S is a 4-tuple (S,I,A,F), where: S is a
finite set ofstates, I ⊆ S is a finite set ofinitial states,
A is a finite set ofactionsand F : S×A→ S is the
transition function, i.e. F(s,a) = s′ iff the system from
state s can reach state s′ via action a.

Hence, a trajectory is a sequence ofstate, ac-
tion π = s0a0 s1a1 s2a2 . . .sn−1an−1 sn such that∀i ∈
[0,n],∀ j ∈ [0,n− 1], si ∈ S is a state, aj ∈ A is an
action, and F(si ,ai) = si+1.

Let S be an FSS according to Def. 1 and letϕ be
an invariant condition specifying some properties to
be satisfied e.g., some consistency properties. Let a
statesE ∈ E be an error state if the invariant formula
ϕ is not satisfied. Then, the set oferror states E⊆Sis
defined as the union of the states violatingϕ. We limit
the error exploration to at mostT actions (the finite
horizon), i.e. only sequences reaching an errorsE ∈
E within the finite horizon are detected. Note that
this restriction has a limited practical impact in our
contexts although being theoretically quite relevant.

Informally speaking, amodel checking problemis
composed by a description of the FSS to be explored
(by means of a model checker tool language), an in-
variant to verify and a finite horizon. A feasible solu-
tion, orerror trace (if any) is a trajectory leading the
system from an initial state to an error one. Generally
speaking, a model checker is usually applied to verify
the correctness of a systemmodel. In our context, we
use a model checker (i) to verify the data consistency
(i.e., if thedataare conform to the model); (ii) to syn-
thesise a set of corrective actions (i.e., all the feasible
corrections activities to cleanse the data).

4 DATA CONSISTENCY VIA FSS

Finite State Systems are used to model event-driven
systems where the events are mapped to the actions of
Def. 1. A bridge between databases (containing lon-
gitudinal data) and event-driven system is required to
perform data quality verification using model check-
ing techniques. This connection can be done by por-
traying a database record as anevent, i.e. a record
content or a subset thereof is interpreted as the de-
scription of an external world event modifying the
system state, and an ordered set of records as anevent
sequence. To better clarify this concept, we formalise
the following.
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Definition 2 (Event, Event Sequence, and Finite State
Event Dataset). LetR = (R1, . . . ,Rn) be a schema re-
lation of a database, let e= (r1, . . . , rm) be anevent
where r1 ∈ R1, . . . , rn ∈ Rn, then e is arecordof the
projection(R1, . . . ,Rm) overR with m≤ n.

A total orderrelation∼ on events can be defined
such that e1 ∼ e2 ∼ . . . ∼ en. An event sequenceis
a ∼-ordered sequence of eventsε = e1, . . . ,en. A Fi-
nite State Event Dataset(FSED) is an event sequence
derived from a longitudinal dataset.

Intuitively, the application of model checking
techniques to data quality problems is driven by the
idea that amodeldescribing the consistent evolution
of feasibleevent sequences (i.e., aconsistency model
expressed by means of FSSs) can be used to verify if
theactual data(i.e., data retrieved from the database)
follow a consistent behaviour. Then, the problem of
verifying a database content consistency can be ex-
pressed as a model checking problem on FSSs: a, so-
lution for the latter (if any) will represent an inconsis-
tent sequence of tuples for the former. Hence, from
here on, we will refer without distinction to anaction
as aneventand vice versa.

Although a whole database content could be
checked by a single FSS, in several domains it is ad-
visable to split the data into different subsets (e.g., for
computational reason). Then, the subsets (each being
a separate FSED) can be checked separately. To this
aim we introduce the following:

Definition 3 (Finite State Event Database). Let Si
be a FSED, we define aFinite State Event Database
(FSEDB) as a database DB whose content is DB=⋃k

i=1Si where k≥ 1.

It should be clear that performing a model-based
data consistency evaluation requires a twofold effort:
(1) to define a consistency model of the data evo-
lution, and (2) to verify the data source (e.g., the
FSEDB introduced before) against the consistency
model. A schematic representation on how this task
can be accomplished by using a model checker is de-
picted in Fig. 1(b). We can distinguish three different
phases:

Step 1 (Data Modelling). A domain expert defines
theconsistency model(e.g., Fig. 1(a)) describing
the correct evolution of the data through the model
checking tool language;

Step 2 (Data Verification). A datasetSi is retrieved
from the data source (S). The model checker auto-
matically generates an FSS representing the evo-
lution of the model defined bySi.

Step 3 (Data Analysis).The model checker looks
for an error trace on the FSS. A solution (if any)
represents an inconsistency affecting the dataset

on the sea
pos=sea

start

in the harbour
pos=harbour
city=CityX

ETypei = “checkin′′∧Cityi = “CityX′′

ETypei = “checkout“ ∧Cityi =
′′CityX“

(a)

Consistency
Model

Model
Checker

DBMS S S+
i

S−i

let an event seq.

let aFSED Si

Si is inconsistent

Si is consistent

(b)

Figure 1: (a) A Graphical representation of the consistency
model of the Travel Plan of a Cruise Ship domain. The
lower part of a node describes how the system state evolves
when an event happens. (b) A Graphical representation of
a model checking based data consistency verification of a
FSEDB.

Si . Otherwise the event sequence is considered
consistent.

The Cruise Ship Example. The following example
should clarify the matter. Let us consider the Cruise
Ship example as introduced in Tab. 1.

An FSED is the travel plan of a ship, the set of the
travel plans of the different ships is the FSEDB. An
event ei is composed by the attributesShipID, City,
Date, andEvent Type, namelyei = (ShipIDi, Cityi ,
Datei, ETypei). Moreover, the total-order operator
∼ could be the binary operator≤ defined over the
event’s attributeDate, hence∀ei ,ej ∈ E,ei ≤ ej iff
Dateei ≤ Dateej . Finally, a simply consistency prop-
erty could be“if a ship checks in to harbour A, then
it will check out from A before checking in to the next
harbour“.

We can model this consistency property through
an FSS. A graphical representation is given in
Fig. 1(a), where the lower part of a node is used to
describe how the system state evolves when an event
happens. In our settings, the system state is composed
by (1) the variablepos, which describes the ship’s
position, and (2) the variablecity describing the city
where the ship has arrived.

The data sourceS is an actual database instance
(e.g., an actual FSEDB) to be verified against the con-
sistency model. In such a case, for each differentSi
(i.e., for each different FSED) the model checker gen-
erates a different FSS modelling theSi consistency
evolution.
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4.1 From actual data to symbolic data

Unfortunately, since the consistency verification is
strongly related to the actual data (i.e., the FSS ex-
panded by the model checker models the evolution of
the database data), the identification of “generic” in-
consistent patterns or properties is hard to be accom-
plished.

To this aim, we use an abstraction of the actual
data, namely thesymbolic data1, to discover generic
inconsistency patterns as well as to identify common
data properties. The following example should clarify
the concept.

The Cruise Ship Example. Let us consider again
the Cruise Ship example of Tab. 1. We recall
that ei = (ShipIDi, Cityi , Datei, ETypei), ei is
is an event, and each sequence or subsequence
of events is ordered with respect to the date val-
ues. Let us consider two inconsistent event se-
quences, related to two different ships, respec-
tively S1 = (checkin,Venice),(checkout,Barcelona)
andS2 = (checkin,Lisbon),(checkout,Naples). For
the sake of simplicity, we focus on very short se-
quences. As described before, these event sequences
will result in the generation of different FSSs. Nev-
ertheless, the inconsistencies found share a common
characteristic: the checkout has been made in a har-
bour different from the one where the last check-in
took place.

We replace the actual city domain dataDcity =
{Venice,Barcelona, Lisbon,Naples, . . .}with a sym-
bolic domain composed by a (small) set of symbols
to identify some common inconsistency patterns in
the previous example. In other words, we can make
an abstraction of the domainDcity by using only two

symbols, namelyDsymbolic
City = {CityX,CityY}. Once a

map between actual to symbolic data has been done,
we can model the domain as shown in Tab. 2.

The number of symbols to be used, i.e. the sym-
bolic set cardinality has to be chosen according to the
criteria described below. More formally, we define
the following.

Definition 4 (Symbolic Data and Symbolic Do-
main). Let s be an FSS state and e be an
event with respectively s= x1, . . . ,xn state vari-
ables and e= (r1, . . . , rm) event attributes. Let D
be a finite (although very large) attribute domain
where{x1, . . . ,xn′} ⊆ {x1, . . . ,xn} and{r1, . . . , rm′} ⊆
{r1, . . . , rm} are instances of D, i.e.,{x1, . . . ,xn′} ∈ D
and{r1, . . . , rm′} ∈ D.

1the idea is not new and it is inspired by theabstract
interpretationtechnique (Clarke et al., 1994).

An event e happening in the state s requires the
evaluation of x1, . . . ,xn′ and r1, . . . , rm′ values, namely
a configuration of n′+m′ different values of D. Then,
we define theSymbolic Domainof D as a set ofdif-
ferentsymbols d1, . . . ,dn′+m′ , called Symbolic Data,
required to represent the values of D in the consis-
tency model, i.e. Dsymbolic= {d1, . . . ,dn′+m′}.

In the Cruise Ship example thecity state variable
and theCityi event attribute both refer to the City
domain, therefore the latter can be replaced by the
symbolic domainDsymbolic

City = {CityX,CityY} in the au-
tomaton of Fig. 1(a). Finally, some trivial conditions
should be met before exploiting a Symbolic Domain
rather than the Actual Domain: (p1) no total order
relation is defined in the actual domain (or the total
order relation is not considered for the scope of the
analysis); (p2) No condition should compare a sym-
bol to a non-symbolic value (e.g.city = “Venice′′ in
the Cruise Ship example).

Table 2: Values of the domain variables of the Cruise Ship
Example.

Variable Type Variable Domain Values

State Variables Pos sea, harbour
City Cityx, Cityy

Event data City
Event Type checkin, checkout

5 DATA CLEANSING VIA FSS

In the previous sections we described how the consis-
tency of a database event sequence can be modelled
and verified through model checking. Looking for-
ward, one can wonder if the consistency model can
be used as the basis to identifycleansing activities.
Namely, once the FSS describing the dataset consis-
tency evolution is generated, can the FSS be exploited
to identify the corrective events (or actions) able to
cleanse an inconsistent dataset?

Let us consider an inconsistent event sequence
having an actionai that leads to an inconsistent state
sj when applied on a (reachable) statesi . Intuitively,
a corrective action sequence represents an alternative
route leading the system from statesi to a state where
the actionai can be applied (without violating the
consistency rules). In other words, acleansing ac-
tion sequence(if any) is a sequence of actions that,
starting fromsi , makes the system able to reach a new
state on which the actionai can be applied resulting
in a consistent state. In this paper we assume that cor-
rections cannot delete or modify existing data as we
are intended to cleanse the data by preserving as much
as possible the source dataset.
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More formally we can define the following.

Definition 5 (Cleansing Action Sequence). Let S =
(S, I ,A,F) be an FSS, E be the set of errors states
(i.e. inconsistent states) and T be the finite horizon.
Moreover,

• let Ω =
⋃

i i∈I

Reach(ii) be the set of all the states

reachable from the initial ones;
• let π = s0a0 . . . siai sj be aninconsistent trajec-

tory, that is a trajectory where sj ∈Ω is an incon-
sistent state (i.e., sj ∈ E) and s0, . . . ,si /∈ E.

Then, a T-cleansing action sequencefor the pair
(si ,ai) is a non-empty sequence of actions Ac =
c0, . . . ,cn ∈ A, such that exists a trajectoryπc = s0a0
. . . si−1ai−1 sic0 si+1 . . . si+ncn skai onS with |Ac| ≤ T,
where all the states s0, . . . ,sk are consistent.

In the AI Planning field aUniversal Plan(Schop-
pers, 1987) is a set of policies, computed off-line,
able to bring the system to the goal from any feasible
state (the reader can see (Cimatti et al., 1998; Della
Penna et al., 2012) for details). Similarly, we are in-
terested in the synthesis of an object, we callUniver-
sal Cleanser(UC), which summarises for eachpair
(state, action) leading to an inconsistent state, the set
A′ of all the feasible cleansing action sequences. This
UC is computed only once and then applied as an or-
acle to cleanse any kind of FSEDB. In this sense, a
(state, action) pair uniquely represents anerror-code.
To this aim, we proceed as follows:

Step 1 (Data Modelling). A consistency model of
the system is formalised by means of a model
checking language as described in Sec. 4.

Step 2 (Database Modelling).A worst-case
FSEDB will be defined, i.e. a fictitious database
which contains all the possible event sequences,
both the consistent and the inconsistent ones,
composed by at mostT events for each. Note
that this step does not require to really generate
such database, indeed it can be easily accom-
plished by allowing the model to receive any
kind of events. For the cruise ship example
a worst-case FSEDB is represented by all the
possible event sequencese1, . . . ,eT where the
variable values range inCityi = {CityX,CityY}
andETypei = {checkin,checkout}. Note that the
value of the finite horizonT can be identified as
the FSSdiameter2.

2Due to the limited space we provide only the intuition
about how this task can be accomplished. The value is com-
puted by the model checker as thediameterof the FSS, i.e.
the largest number of states which must be visited in or-
der to travel from one state to another excluding trajectories
which backtracks or loops.

Step 3 (Data Verification). Use the model checker
to generate the FSS representing all the inconsis-
tent sequences, starting from the database domain
model (step 2) and the consistency model (step
1), the whole process is shown in Fig. 1(b) as de-
scribed in Sec. 4

Step 4 (UC Synthesis).Explore the FSS to synthe-
sise the Universal Cleanser.

Now we are in state to formalise the Universal
Cleansing Problem (UCP) and its solution.

Definition 6 (Universal Cleansing Problem and So-
lution). A Universal Cleansing Problem(UCP) is a
triple D = {S ,E,T} whereS = (S, I ,A,F) is an FSS,
E be the set of error (or inconsistent) states computed
by the model checker, and T is the finite horizon.

A solution forD, or a Universal Cleanserfor D is
a mapK from the setΩ×A to a subset A′ of the power
set of A, namely A′ ⊆ 2A, where for each inconsistent
trajectory π = s0a0 . . . siai sj if A′ 6= /0 then A′ must
containall the possibleT-cleansing action sequences
for the pair(si ,ai).

It is worth to highlight that, while on the one
hand the UC generated isdomain-dependent, i.e. it
can deal only with event sequences conforming to
the model that generated it, on the other hand it is
data-independentsince, once the UC is computed on
a worst-case FSEDB, it can be used to cleanseany
FSEDB. The pseudo code of the algorithm generat-
ing a Universal Cleanser is given in Algorithms 1 and
2. It has been implemented on the top of the UPMur-
phi tool (Della Penna et al., 2009) which has been en-
hanced with a disk-based algorithm to deal also with
big state spaces (Mercorio, 2013). The Algorithm 1
takes as input the FSS specification of the domain,
the set of error states given by the model checker (to
identify inconsistent trajectories) and a finite horizon
T. Then, it looks for a cleansing action sequence (ac-
cording to Def. 5) for each inconsistent (state, action)
pair. This work is recursively accomplished by the
Algorithm 2 which explores the FSS through a Depth-
First visit collecting and returning all the cleansing
solutions.

Running Example. Consider again the Cruise Ship
example of Tab. 1. We recall that anevent ei is ei =
(ShipIDi, Cityi , Datei, ETypei) and each event se-
quence and subsequence is ordered with respect to the
event dates. It is worth to note that the finite horizon
T = 2 is enough to guarantee that any kind of incon-
sistency will be generated and then corrected using no
more than 2 actions. Consider that the main elements
of an event areETypei ∈ {checkin,checkout},Cityi ∈
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Table 3: 2-steps Universal Cleanser for the Cruise Ship Example.

([state],(action)) Corrective Actions
([pos= sea], (checkout,CityX)) (checkin,CityX)

([pos= harbour∧city =CityX], (checkout,CityY))
(checkout,CityX)
(checkin,CityY)

([pos= harbour∧city =CityX], (checkin,CityY)) (checkout,CityX)
([pos= harbour∧city =CityX ], (checkin,CityX)) (checkout,CityX)

{CityX,CityY}, i.e., 4 possible events. Then, we rep-
resent thewost-caseFSEDB by considering into our
model all the possible 2-step event subsequences (i.e.,
simply enrich each node of the graph in Fig. 1(a) with
all the possible edges). Table 3 shows the Univer-
sal Cleansing for our example, which isminimalwith
respect to the number of event variable assignments,
i.e., the missing pair ([pos= sea], (checkout,CityY))
fits on ([pos= sea], (checkout,CityX)). The UC, once
generated, is able to cleanse any kind ofFSEDBcom-
pliant with the model from which it has been gener-
ated.

Algorithm 1 : UNIVERSALCLEANSING.

Input: FSSS ,
set of error statesE,
finite horizonT

Output: Universal CleanserK
1: level← 0; //to stop whenT is reached
2: for all s∈ S,a∈ A s.t. F(s,a) = serr do
3: K [s,a]← AUX UC(s,a, level)
4: return K

Algorithm 2 : AUX UC.

Input: a states,
an actiona,
a finite horizonlevel

Output: list of correction sequencescs[]
1: cs[]← /0 //list of correction sequences
2: csaux[]← /0 //aux list of correction sequences
3: i← 0 //local cs[] index
4: if level< T then
5: for all a′ ∈ A s.t.F(s,a′) = s′ with s′ /∈ E do
6: if F(s′,a) = s′′ s.t. s′′ /∈ E then
7: cs[i]← a′

8: i← i +1
9: else

10: csaux[]← AUX UC(s′,a, level+1)
11: for all seq∈ csaux do
12: cs[i]← a′∪seq
13: i← i +1
14: return cs[]

The Fig. 2(a) describes the overall cleansing pro-
cess. As a first step, a consistency model of the do-
main is defined while the Universal Cleanser is au-

tomatically synthesised according to the procedures
presented in Sec. 4. Then, the “Consistency Verifica-
tion” task verifies each sequence of the source (and
dirty) databaseS. When an inconsistency is found the
“Cleanse the Inconsistency” task scans the UC look-
ing for a correction. Since the UC may provide more
than one corrective actions for the same inconsis-
tency, a criterion (i.e., apolicy) is required to select a
suitable correction. Once a correction has been prop-
erly identified, the inconsistency is fixed and the new
sequence is verified iteratively until no further incon-
sistencies are found. Finally, the new cleansed events
sequence is stored into the database “S Cleansed”.

It is worth noting that the cleansed results may
vary as the policy varies (i.e., the cleansed database
depends upon the input set of policies) which can be
fixed as well as evolve during the cleansing phase,
e.g., by using learning algorithms. Clearly, the best
suited policy for a given domain can be selected ac-
cording to several criteria, which often is driven by
the data analysis purposes. As an example, one could
be interested in studying the variation of an indicator
value computed on the cleansed data. To this aim, a
policy able to maximise or minimise the value of such
indicator should be applied, see e.g. (Mezzanzanica
et al., 2012). A discussion on how select a suitable set
of policies falls out of the scope of this work. Never-
theless, once the UC has been synthesised any kind of
policy can be applied.

6 AN OPEN DATA BENCHMARK
PROBLEM

The domain we are presenting is freely inspired by
the Italian labour market domain. Indeed, since the
1997, the Italian public administration has been devel-
oping an ICT infrastructure, called the“CO System”,
for recording data concerning employment and active
labour market policies, generating an administrative
archive useful for studying the labour market dynam-
ics, e.g., (Martini and Mezzanzanica, 2009). Accord-
ing to the Italian labour market laws, every time an
employer hires or dismisses an employee, or an em-
ployment contract is modified (e.g. from part-time
to full-time, or from fixed-term to unlimited-term), a
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... ...

Seq. 9 (cn,FT,Unlimited,CompanyX)

(cn,FT,Limited,CompanyX)

(cn,PT,Unlimited,CompanyX)→ emp i

(b)

Figure 2: (a) A graphical representation of the ConsistencyVerification and Cleansing Processes. (b) Some corrective action
sequences given by the UC for the error-code 289 withst= start, cs= cessation, cn= conversionandex= extension.

communication (i.e., an event) is sent to a job reg-
istry, managed at local level. These communications
are calledMandatory Communications.

6.1 Domain Modelling

Each mandatory communication is stored into a
record composed by the following attributes:

e id: it represents an id identifying the communica-
tion;

w id: it represents an id identifying the person in-
volved in the event;

e date: it is the event occurrence date;

e type: it describes the type of events occurring to
the worker career. Events types are thestart or
thecessationof a working contract, theextension
of a fixed-term contract, or theconversionfrom a
contract type to a different one;

c flag: it states whether the event is related to a full-
time or a part-time contract;

c type: describes the contract type with respect to the
Italian law. Here we considerLimited, i.e. fixed-
term, andunlimited, i.e. unlimited-term, con-
tracts.

empr id: it uniquely identifies the employer in-
volved in the event.

The evolution of a consistent worker’s career
along the time is described by asequenceof events
ordered with respect toe dateand grouped byw id:
the sequence can be considered as longitudinal data.
Considering the terminology introduced in Def. 1 and
Def. 2, an FSED is the ordered set of events for

a given w id, and the FSEDs union composes the
FSEDB. Now we closely look to the worker careers
consistency, where the consistency semantics is de-
rived from the Italian labour law, from the domain
knowledge, and from the common practice. Here are
reported some constraints:

c1: an employee can have no more than one full-time
contract active at the same time;

c2: an employee cannot have more thanK part-time
contracts (signed by different employers); in our
context we assumeK = 2 i.e., an employee cannot
have more than two part time jobs active at the
same time;

c3: a contract extension cannot change the existing
contract type (c type) and the part-time/full-time
status (c f lag) e.g., a part-time and fixed-term
contract cannot be turned into a full-time contract
by an extension;

c4: a conversion requires either thec type or the
c f lag to be changed (or both).

For simplicity, we omit to describe some trivial
constraints e.g., an employee cannot have acessation
event for a company for which she/he does not work,
an event cannot be recorded twice, etc.

The UPMurphi tool allows us to build an FSS un-
pon which we perform the data consistency task. A
worker’s career at a given time point (i.e., the sys-
tem state) is composed by three elements: the list of
companies for which the worker has an active con-
tract (C[]), the list of modalities (part-time, full-time)
for each contract (M[]) and the list of contract types
(T[]).
To give an example,C[0] = 12, M[0] = PT, T[0] =
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unlimited models a worker having an active unlim-
ited part-time contract with company 12.

A graphical representation of the domain is
showed in Figure 3 and it outlines a consistent ca-
reer evolution. Note that, to improve the readabil-
ity, we omitted to representconversionevents as well
as inconsistent states/transitions (e.g., a worker ac-
tivating two full-time contracts), which are handled
by the FSS generated by the UPMurphi model. A
valid career can evolve signing a part-time contract
with companyi, then activating a second part-time
contract with companyj, then closing the second
part-time and then reactivating the latter again (i.e.,
unemp,empi, empi, j , empi ,empi, j ).

From Actual to Symbolic Data. A mapping from
actual to symbolic data has been identified as de-
scribed in Sec 4.1 taking into account both states and
events of the automaton of Fig. 3.

We recall that, for the sake of clarity the automa-
ton shows only the consistent transitions triggered by
the events allowed in a state, whilst the model checker
automatically manages also inconsistent transitions,
i.e. transitions triggered by events that lead to an “er-
ror state”.

The attributesc type, e type, and c flag are al-
ready bounded and we left them as is, while the
empr id attribute domain has been mapped on a sym-
bolic set of 3 symbols{emprx,empry,emprz} accord-
ing to the process described in Sec. 4.1.

Finally, we highlight that the model satisfies the
conditions p1 and p2 introduces in the Sec. 4.1,
namely: (1) a total order relation for theempr id do-
main is defined but it is not considered in the automa-
ton, and (2) there are no conditions comparing a sym-
bolic value with a non symbolic one.

6.2 Experimental Results

Here we comment some results about the consistency
verification process performed on the dataset pre-
sented in Sec. 6.3. Note that, in order to analyse the
quality of the source dataset (wrt consistency), UP-
Murphi stops the verification algorithm when an in-
consistency is found, avoiding the evaluation of the
remaining part of the career. Indeed a further evalua-
tion of a career consistency may be affected by the
cleansing policy applied, then falsifying the results
about the quality of the source dataset.

As first step, we synthesised the UC, identify-
ing 342 different error-codes, i.e.all the possible
3-steps (state,action) pairs leading to an inconsistent
state of the model. Then, the verification process on
the dataset caught 92,598 inconsistent careers (i.e.,

the 43% of total careers). The Fig. 4 shows a graph-
ical distribution of the error-codes found. The x-axis
reports the error-codes of the UC while the y-axis
summarises the number of careers affected by that er-
ror. Several analyses can be performed on such con-
sistency outcomes. Nevertheless, since the aim of
this work is to provide a technique and a benchmark
dataset so that other approaches, comparisons and sta-
tistical analysis can be performed on such data, we
restrict ourselves to consider the following.

• The closer the error-codes, the similar the error
characteristics. We discovered that the three most
numerous error codes (i.e., 335, 329 and 319 rep-
resenting about the 30% of total inconsistencies)
arose due to an extension, cessation or conversion
event received when the worker was in theunem-
ployedstatus. Hence, cleansing activities for such
careers may have a great impact on the quality of
the cleansed data.

• Some error-codes require no less than 3 correc-
tive actions to cleanse the data. As an exam-
ple we report the case of the error-code 53: A
worker having two active part-time contracts with
CompanyXandCompanyYreceives the cessation
of a full-time contract for a thirdCompanyZ. In
such a case, a corrective action sequence requires
at least three actions to fix the inconsistencies,
i.e., to close the contract withCompanyXand
CompanyYand then to start a new full-time con-
tract withCompanyZ.

• The UC helps to discover cleansing activities that
might otherwise be neglected. To this regard, let
us consider the case of a worker having a full-
time contract with aCompanyXwhich receives a
start of a new part-time contract withCompanyY.
Looking at the model, a domain expert can ar-
gue that probably the worker has closed the full-
time contract, but the communication was lost. As
a consequence, a hand-written cleansing activity
may fix the inconsistency by closing the full-time
contract. Nevertheless, for such inconsistency
(i.e., the error-code 289) the UC returns 9 differ-
ent cleansing sequences, as shown in Tab. 2(b),
which can contribute in the identification of alter-
native cleansing policies.

It is worth noting that applying different corrective ac-
tions may lead to different cleansed states, as in the
latter example where fixing the inconsistency through
Seq.1 leads the worker career to the unemployed state
whilst the application of Seq.3 brings the career to
a different one (i.e., theempi). Hence, for a high-
quality cleansing process the joint utilisation of UC
and domain-dependent policies is required.
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Figure 3: A graphical representation of a valid worker’s career FSS wherest = start, cs= cessation, cn= conversionand
ex= extension.

6.3 Online Dataset Description

The whole dataset and the experimental results
presented in Sec. 6.2 has been made publicly avail-
able for download3. The source archive contains
1,248,814 mandatory communications describing
the careers of 214,429 people observed starting from
the 1st January 2001 to the 31st December 2010. The
dataset is composed by the following tables:

The Worker Careers. It is a table composed by 7
columns, whose semantics has been detailed in
Sec. 6.1.

The Consistency Verification Results.It is a table
composed by three columns, namely the worker
id, the error code and theerror index of the
event after the shortest consistent subsequence:
Considering a career composed byn events, an
error index i with 0 ≤ i < n means thati − 1
events make the career consistent whilst thei-th
event makes it inconsistent.

The Universal Cleanser. It has been generated ac-

3http://goo.gl/zrbrR. The username is:
data2013materials@gmail.com Password: data2013

cording to Def. 6 on the consistency model of
Fig. 3.

7 CONCLUDING REMARKS

In this paper we have shown how a model-based
approach can be used to verify and cleanse a dirty
dataset, providing an algorithm (build on top of the
UPMurphi tool) to automatically synthesise a uni-
versal cleanser that, as a characteristic, isdomain-
dependent(i.e., it copes with consistency issues
for a given domain) butdata-independent(i.e., it
can cleanse any kind of dataset compliant with the
model).

Moreover, we presented a real-world scenario in
the labour market domain for which the universal
cleanser has been computed. As a further contri-
bution, an anonymous version of the dataset used
has been made available for download (according to
the current law and privacy requirements) together
with the cleanser and the consistency verification out-
comes. Our results confirm the usefulness of ex-
ploiting model-based verification and cleansing ap-
proaches in the data quality field, as it may help do-
main experts and decision makers to have a better
comprehension of the domain aspects, of the data pe-
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Figure 4: A graphical visualisation of the distribution of the error-codes found.

DATA�2013�-�2nd�International�Conference�on�Data�Management�Technologies�and�Applications

148



culiarities, and of the cleansing issues.
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