two other topologically secure schemes cited here will
be conducted in order to compare these processes, be-
ing thus able to choose the best one according to the
type of applications under consideration. Finally, se-
curity in steganography context will be investigated
too, and topological security will be applied in this
framework.
REFERENCES
Bahi, J., Friot, N., and Guyeux, C. (2012). Lyapunov ex-
ponent evaluation of a digital watermarking scheme
proven to be secure. In IIH-MSP’2012, 8-th Int.
Conf. on Intelligent Information Hiding and Multi-
media Signal Processing, pages ***–***, Piraeus-
Athens, Greece. IEEE Computer Society. To appear.
Bahi, J. M. and Guyeux, C. (2010). A chaos-based approach
for information hiding security. arXiv N
o
0034939.
Banks, J., Brooks, J., Cairns, G., and Stacey, P. (1992). On
devaney’s definition of chaos. Amer. Math. Monthly,
99:332–334.
Cachin, C. (2004). An information-theoretic model for
steganography. Information and Computation, 192:41
– 56.
Cayre, F., Fontaine, C., and Furon, T. (2008). Kerckhoffs-
based embedding security classes for woa data hiding.
IEEE Transactions on Information Forensics and Se-
curity, 3(1):1–15.
Devaney, R. L. (1989). An Introduction to Chaotic Dynam-
ical Systems. Addison-Wesley, Redwood City, CA,
2nd edition.
Formenti, E. (1998). Automates cellulaires et chaos : de
la vision topologique la vision algorithmique. PhD
thesis,
´
Ecole Normale Suprieure de Lyon.
Friot, N., Guyeux, C., and Bahi, J. (2011). Chaotic iter-
ations for steganography - stego-security and chaos-
security. In SECRYPT’2011, Int. Conf. on Security
and Cryptography, pages ***–***, Sevilla, Spain. To
appear.
Furon, T. (2002). Security analysis. European Project IST-
1999-10987 CERTIMARK, Deliverable D.5.5.
Guyeux, C., Friot, N., and Bahi, J. (2010). Chaotic itera-
tions versus spread-spectrum: chaos and stego secu-
rity. In IIH-MSP’10, 6-th Int. Conf. on Intelligent In-
formation Hiding and Multimedia Signal Processing,
pages 208–211, Darmstadt, Germany.
Kalker, T. (2001). Considerations on watermarking security.
In Multimedia Signal Processing, 2001 IEEE Fourth
Workshop on, pages 201–206.
Mao, Y. and Chen, X. (2011). An encryption algorithm
of chaos based on sine square mapping. In Proceed-
ings of the 2011 Fourth International Symposium on
Computational Intelligence and Design - Volume 01,
ISCID ’11, pages 131–134, Washington, DC, USA.
IEEE Computer Society.
Mart´ınez-
˜
Nonthe, J. A., D´ıaz-M´endez, A., Cruz-Irisson,
M., Palacios-Luengas, L., Del-R´ıo-Correa, J. L., and
V´azquez-Medina, R. (2011). Cryptosystem with one
dimensional chaotic maps. In Proceedings of the
4th international conference on Computational intel-
ligence in security for information systems, CISIS’11,
pages 190–197, Berlin, Heidelberg. Springer-Verlag.
Mittelholzer, T. (1999). An information-theoretic approach
to steganography and watermarking. In Pfitzmann,
A., editor, Information Hiding, volume 1768 of Lec-
ture Notes in Computer Science, pages 1–16, Dresden,
Germany. Springer.
Perez-Freire, L., P´erez-gonzalez, F., and Comesa˜n, P.
(2006). Secret dither estimation in lattice-quantization
data hiding: A set-membership approach. In Delp,
E. J. and Wong, P. W., editors, Security, Steganogra-
phy, and Watermarking of Multimedia Contents, San
Jose, California, USA. SPIE.
Schwartz, L. (1980). Analyse: topologie g´en´erale et anal-
yse fonctionnelle. Hermann.
Shannon, C. E. (1949). Communication theory of secrecy
systems. Bell Systems Technical Journal, 28:656–715.
Simmons, G. J. (1984). The prisoners’ problem and the
subliminal channel. In Advances in Cryptology, Proc.
CRYPTO’83, pages 51–67.
TopologicalStudyandLyapunovExponentofaSecureSteganographicScheme
283