Multi-Point Measurement System and Data Processing for Earthquakes Monitoring

Valery Korepanov, Fedir Dudkin

2013

Abstract

Lithospheric ultra low frequency (ULF) magnetic activity is recently considered as very promising candidate for application to short-time earthquake (EQ) forecasting. However the intensity of the ULF lithospheric magnetic field is very weak and often masked by much stronger ionospheric and magnetospheric signals. The study of pre-EQ magnetic activity before the occurrence of strong EQ is a very hard problem which consists of the identification and localization of weak signal sources in EQ-hazardous areas of the Earth’s crust. A new approach is developed to find a source of pre-EQ ULF electromagnetic activity of lithospheric origin. For separation and localization of such sources a new polarization ellipse technique has been used to process data acquired from 3-component magnetometers. The polarization ellipse is formed by the magnetic field components at the measurement station. Calculations based on polarization ellipse parameters from two distant points allow discrimination of seismo-EM signals from natural background ULF signals. The results of experimental verification of this method in Kanto region (Japan), known as one of the most seismoactive, are given which partially confirm its efficiency and give hope, with its further improvement, to the progress in the EQ precursors reliable detection in other regions of the Globe, particularly, in Iceland known by the active seismic activity.

References

  1. Bleier, T., Dunson, C., Maniscalco, M., Bryant, N., Bambery, R., Freund, F., 2009. Investigation of ULF magnetic pulsations, air conductivity changes, and infra red signatures associated with the 30 October Alum Rock M5.4 earthquake, In Nat. Hazards Earth Syst. Sci., 9, 585-603.
  2. Campbell, W. H., 2009. Natural magnetic disturbances fields, not precursors, preceding the Loma Prieta earthquake. In J. Geophys. Res., 114, A05307, doi:10.1029/2008JA013932.
  3. Du, A., Huang, Q., Yang, S., 2002. Epicenter location by abnormal ULF electromagnetic emissions. In Geophys. Res. Lett., 29 (10), 1455-1458.
  4. Dudkin, F., De Santis, A., Korepanov, V., 2003. Active EM sounding for early warning of earthquakes and volcanic eruptions, In Phys. Earth Planet. Inter., 139 (3, 4), 187-195.
  5. Dudkin, F., Rawat, G., Arora, B. R., Korepanov, V., Leontyeva, O., and Sharma, A. K. 2010. Application of polarization ellipse technique for analysis of ULF magnetic fields from two distant stations in KoynaWarna seismoactive region, West India, In Nat. Hazards Earth Syst. Sci., 10, 1513-1522.
  6. Dudkin, F., Korepanov, V., Yang, D., Li, Q. and Leontyeva, O., Analysis of the local lithospheric magnetic activity before and after Panzhihua Mw=6.0 earthquake (30 August 2008, China), 2011. In Nat. Hazards Earth Syst. Sci, 11, 1-10, doi: 10.5194/nhess11-1-2011.
  7. Fedorov, E., Pilipenko, V., Uyeda, S., 200l. Electric and Magnetic Fields Generated by Electrokinetic Processes in a Conductive Crust. In Phys. Chem. Earth (C), 26 (10-12), 793-799.
  8. Fitterman, D. V., 1979. Theory of electrokinetic magnetic anomalies in a faulted half-space, In J. Geophys. Res., 84 (B11), 6031-6040.
  9. Fraser-Smith, A. C., Bernardi, A., McGill, P. R., Ladd, M. E., Helliwell, R. A., Villard Jr., O. G., 1990. Lowfrequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta earthquake. In Geophys. Res. Lett., 17, 1465-1468.
  10. Hattori, K. and Hayakawa, M., 2007. Recent progress and state of the art of seismo-electromagnetics, In IEEJ Transactions on Fundamentals and Materials, 127(1), 4-6.
  11. Hayakawa, M., Kawate, R., Molchanov, O. A., Yumoto, K., 1996. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. In Geophys. Res. Lett., 23, 241-244.
  12. Hayakawa, M., Itoh, T., Smirnova, N., 1999. Fractal analysis of ULF geomagnetic data associated with the Guam earthquake on 8 August 1993. In Geophys. Res. Lett., 26, 2797-2800.
  13. Hayakawa, M., Itoh, T., Hattori, K., Yumoto, K., 2000. ULF electromagnetic precursors for an earthquake in Biak, Indonesia on 17 February 1966. In Geophys. Res. Lett., 27, 1531-1534.
  14. Hayakawa, M., Hattori, K., Ohta, K., 2007. Monitoring of ULF (ultra-low-frequency) Geomagnetic Variations Associated with Earthquakes. In Sensors, 7, 1108- 1122.
  15. Ida, Y., Hayakawa, M., 2006. Fractal analysis for the ULF data during the 1993 Guam earthquake to study prefracture criticality. In Nonlin. Processes Geophys., 13, 409-412.
  16. Ismaguilov, V. S., Kopytenko, Yu. A., Hattori, K., Hayakawa, M., 2003. Variations of phase velocity and gradient values of ULF geomagnetic disturbances connected with the Izu strong earthquakes. In Nat. Hazards Earth Syst. Sci., 3, 211-215.
  17. Johnston, M. J. S., Muller, J. S. and Sasai, Y., 1994. Magnetic field observations in the near field: the 28 June, 1992 Mw 7.3 Landers, California Earthquake. In Bull Seism. Soc. Am., 84, 792-798.
  18. Martin, R. J., Habermann, R. E., Wyss, M., 1978. The effect of stress cycling and inelastic volumetric strain on remanent magnetization. In J. Geophys. Res., 83, 3485-3496.
  19. Mizutani, H., Ishido, T., Yokokura, T., Ohnishi, S., 1976. Electrokinetic phenomena associated with earthquakes. In Geophys. Res. Lett., 13, 365-368.
  20. Molchanov, O. A., Kopytenko, Yu. A., Voronov, P. M., Kopytenko, E .A., Matiashvili, T.G., Fraser-Smith, A.C., Bernardy, A., 1992. Results of ULF magnetic field measurements near the epicenters of the Spitak (Ms = 6.9) and Loma Prieta (Ms = 7.1) earthquakes: comparative analysis. In Geophys. Res. Lett., 19, 1495-1498.
  21. Molchanov, O. A., Hayakawa, M., 1995. Generation of ULF electromagnetic emissions by microfracturing. In Geohpys. Res. Lett., 22, 3091-3094.
  22. Molchanov, O. A., Schekotov, A. Yu., Fedorov, E., Belyaev, G. G., Solovieva, M. S., Hayakawa, M., 2004. Preseismic ULF effect and possible interpretation. In Annals of Geophysics, 47 (1), 119- 131.
  23. Nishimura, T., Sagiya, T., Stein, R., 2007. Crustal block kinematics and seismic potential of the northernmost Philippine Sea plate and Izu microplate, central Japan, inferred from GPS and leveling data. In J. Geophys. Res., 112, doi:10.1029/2005JB004102.
  24. Ogawa, T., Oike, K., Miura, T., 1985. Electromagnetic Radiations from Rocks. In J. Geophys. Res., 90 (D4), 6245-6249.
  25. Ogawa, T., Utada, H., 2000. Coseismic piezoelectric effects due to a dislocation. 1. An analytic far and early-time field solution in a homogeneous whole space. In Phys. Earth Planet. Inter., 121, 273-288.
  26. Pronenko, V. A., 2010. Interference-proof induction magnetometer for ULF band. In Proceedings of VII International conference “Metrology-2010”, Kharkiv, Ukraine, 237-240, (in Russian).
  27. Schekotov, A. Y., Molchanov, O. A., Hayakawa, M., Fedorov, E. N., Chebrov, V. N., Sinitsin, V. I., Gordeev, E. E., Belyaev, G. G., Yagova, N. V., 2007. ULF/ELF magnetic field variations from atmosphere induced by seismicity. In Radio Sci., 42, RS6S90, doi:10.1029/2005RS003441.
  28. Schekotov, A. Y., Molchanov, O. A., Hayakawa, M., Fedorov, E. N., Chebrov, V. N., Sinitsin, V. I., Gordeev, E. E., Andreevsky, S. E., Belyaev, G. G., Yagova, N. V., Gladishev, V. A., Baransky, L. N., 2008. About possibility to locate an EQ epicenter using parameters of ELF/ULF preseismic emission. In Nat. Hazards Earth Syst. Sci., 8, 1237-1242.
  29. Serita, A., Hattori, K., Yoshino, C., Hayakawa, M., Isezaki, N., 2005. Principal component analysis and singular spectrum analysis of ULF geomagnetic data associated with earthquakes. In Nat. Hazards Earth Syst. Sci., 5, 685-689.
  30. Surkov, V. V., Molchanov, O. A., Hayakawa, M., 2003. Pre-earthquake ULF electromagnetic perturbations as a result of inductive seismomagnetic phenomena during microfracturing. In J. Atmos. Sol. Terr. Phys., 65 (1), 31-46.
  31. Surkov, V. V., Molchanov, O. A., Hayakawa, M., 2004. A direction finding technique for the ULF electromagnetic source. In Nat. Hazards Earth Syst. Sci., 4, 513-517.
  32. Thomas, J. N., Love, J. J., Johnston, M. J. S., and Kiyohumi, Y., 2009. On the reported magnetic precursor of the 1993 Guam earthquake. In Geophys. Res. Lett., 36, L16301, doi:10.1029/2009GL039020.
  33. Uyeda, S., Nagao, T., Kamogava, M., 2009. Short-term earthquake prediction: Current status of seismoelectromagnetics. In Tectonophysics, 470, 205-213.
Download


Paper Citation


in Harvard Style

Korepanov V. and Dudkin F. (2013). Multi-Point Measurement System and Data Processing for Earthquakes Monitoring . In Proceedings of the 10th International Conference on Signal Processing and Multimedia Applications and 10th International Conference on Wireless Information Networks and Systems - Volume 1: SIGMAP, (ICETE 2013) ISBN 978-989-8565-74-7, pages 119-124. DOI: 10.5220/0004506201190124


in Bibtex Style

@conference{sigmap13,
author={Valery Korepanov and Fedir Dudkin},
title={Multi-Point Measurement System and Data Processing for Earthquakes Monitoring},
booktitle={Proceedings of the 10th International Conference on Signal Processing and Multimedia Applications and 10th International Conference on Wireless Information Networks and Systems - Volume 1: SIGMAP, (ICETE 2013)},
year={2013},
pages={119-124},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004506201190124},
isbn={978-989-8565-74-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Signal Processing and Multimedia Applications and 10th International Conference on Wireless Information Networks and Systems - Volume 1: SIGMAP, (ICETE 2013)
TI - Multi-Point Measurement System and Data Processing for Earthquakes Monitoring
SN - 978-989-8565-74-7
AU - Korepanov V.
AU - Dudkin F.
PY - 2013
SP - 119
EP - 124
DO - 10.5220/0004506201190124