REFERENCES
Ahmadi, O., Hankerson, D., & Menezes, A. (2007).
Software implementation of arithmetic in. Arithmetic
of Finite Fields, 85-102.
Barreto, P., Kim, H., Lynn, B., & Scott, M. (2002).
Efficient algorithms for pairing-based cryptosystems.
Advances in Cryptology—CRYPTO 2002, 354-369.
Bernstein, D., & Lange, T. (2007). Faster addition and
doubling on elliptic curves. Advances in Cryptology,
13, 29-50. Retrieved from http://cr.yp.to/newelliptic/ -
20070906.pdf
Blake, I., Seroussi, G., & Smart, N. (1999). Elliptic curves
in cryptography. (1st ed.). London: Cambridge
University Press.
Boneh, D., & Franklin, M. (2001). Identity-based
encryption from the Weil pairing. In Advances in
Cryptology—CRYPTO 2001 (pp. 213-229). Springer
Berlin/Heidelberg.
Das, A., & Madhavan, C. E. V. (2009). Public-key
cryptography: theory and practice. (1st ed.). New
Delhi: Dorling Kindersley.
Galbraith, S. (2001). Supersingular curves in
cryptography. Advances in Cryptology—ASIACRYPT
2001, 495-513.
Hankerson, D., Menezes, A., & Vanstone, S. (2004).
Guide to elliptic curve cryptography. (1st ed.).
Springer.
Harrison, K., Page, D., & Smart, N. P. (2002). Software
implementation of finite fields of characteristic three,
for use in pairing-based cryptosystems.LMS
Journal of Computation and Mathematics, 5(1),
181-193.
Iyengar, V. S. (2012). Novel elliptic curve scalar
multiplication algorithms for faster and safer public-
key cryptosystems. International Journal on
Cryptography and Information Security, 2(3), 57-66.
doi: 10.5121/ijcis.2012.2305
Koblitz, N. (1994). A course in number theory and
cryptography. (2 ed.). New York, NY: Springer
Koblitz, N. (1987). Elliptic curve
cryptosystems. Mathematics of Computation, 48(177).
203–209. Retrieved from http://www.ams.org/
journals/mcom/1987-48-177/S0025-5718-1987-
0866109-5/S0025-5718-1987-0866109-5.pdf
Lawson, N. (2009). Side-channel attacks. IEEE, 7(6), 65-
68. Retrieved from http://rootlabs.com/articles/
IEEE_SideChannelAttacks.pdf
Lidl, R. and Niederreiter, H. Introduction to Finite Fields
and Their Applications, rev. ed. Cambridge, England:
Cambridge University Press, 1994.
Lidl, R. and Niederreiter, H. (Eds.). Finite Fields, 2nd ed.
Cambridge, England: Cambridge University Press,
1997.
O’Connor, S.E. (2013) Primpoly (Version 11.0)
[Computer Software] Available from: http://www.
seanerikoconnor.freeservers.com/Mathematics/Abstrac
tAlgebra/PrimitivePolynomials/overview.html
Partow, A. (2006) Galois Field Arithmetic Library
(Version 5.0) [Computer Software] Available
from:
http://www.partow.net/projects/galois/#GFALLice nse
Silverman, J. H. (2006). A friendly introduction to number
theory.
(3rd ed., Vol. 3). Pearson Prentice Hall.
What is diffie-hellman (n.d.). RSA Labs: PKCS, 7,
Retrieved from http://www.rsa.com/rsalabs/
node.asp?id=2248
(2012). Edwards Curve. Wikipedia, the free encyclopedia,
Retrieved from http://en.wikipedia.org/wiki/
File:Edward-curves.svg
SECRYPT2013-InternationalConferenceonSecurityandCryptography
536