Table 1: Our results for different models. We expose the time for the reconstruction process (time), the average distance to P
(dist) times 10
4
and the square distance to P (dist
2
) times 10
7
. We also tested different values for num
v
. Note that models are
normalized by setting the cubic diagonal of their bounding box to one.
GCS
GCS error=d
p
GCS error=d
2
p
Model (# triangles)
time[s]
dist
dist
2
time[s]
dist
dist
2
time dist
dist
2
Hand (20K)
6
3.19
4.38
7
4.29
4.11
6 4.70 5.00
Dragon (100K)
61
2.29
3.42 65 2.55
2.97
66 3.05 4.34
Asian Dragon
(100K)
55 2.36 3.62 61
2.71
2.53 61 2.83 2.78
Thai Statue (200K)
146 3.21 15.4
147
3.00 4.02 148 4.05
7.17
Happy Buddha
(200K)
150 1.48
14.1
158
1.89
11.7
160 4.02 63.0
num
v
= 1
num
v
= 5
num
v
= 10
Model (# triangles)
time[s]
dist
dist
2
time[s]
dist
dist
2
time dist
dist
2
Dragon (100K)
62 2.35 3.01
71
2.55 3.05
121
2.57
2.95
REFERENCES
Amenta, N., Bern, M., and Kamvysselis, M. (1998). A
new voronoi-based surface reconstruction algorithm.
In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, SIG-
GRAPH ’98, pages 415–421, New York, NY, USA.
ACM.
Annuth, H. and Bohn, C. A. (2010). Tumble tree: reduc-
ing complexity of the growing cells approach. In Pro-
ceedings of the 20th international conference on Ar-
tificial neural networks: Part III, ICANN’10, pages
228–236, Berlin, Heidelberg. Springer-Verlag.
Annuth, H. and Bohn, C.-A. (2012). Smart growing cells:
Supervising unsupervised learning. In Madani, K.,
Dourado Correia, A., Rosa, A., and Filipe, J., editors,
Computational Intelligence, volume 399 of Studies in
Computational Intelligence, pages 405–420. Springer
Berlin / Heidelberg. 10.1007/978-3-642-27534-0 27.
Baader, A. and Hirzinger, G. (1993). Three-dimensional
surface reconstruction based on a self-organizing fea-
ture map. In In Proc. 6th Int. Conf. Advan. Robotics,
pages 273–278.
Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C.,
Taubin, G., and Member, S. (1999). The ball-
pivoting algorithm for surface reconstruction. IEEE
Transactions on Visualization and Computer Graph-
ics, 5:349–359.
Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J.,
Fright, W. R., McCallum, B. C., and Evans, T. R.
(2001). Reconstruction and representation of 3d ob-
jects with radial basis functions. In Proceedings of the
28th annual conference on Computer graphics and in-
teractive techniques, SIGGRAPH ’01, pages 67–76,
New York, NY, USA. ACM.
Chang, M.-C., Leymarie, F. F., and Kimia, B. B. (2009).
Surface reconstruction from point clouds by trans-
forming the medial scaffold. Comput. Vis. Image Un-
derst., 113(11):1130–1146.
Curless, B. and Levoy, M. (1996). A volumetric method for
building complex models from range images. In Pro-
ceedings of the 23rd annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’96,
pages 303–312, New York, NY, USA. ACM.
Edelsbrunner, H. and M
¨
ucke, E. P. (1992). Three-
dimensional alpha shapes. In Volume Visualization,
pages 75–82.
Fritzke, B. (1993). Growing cell structures - a self-
organizing network for unsupervised and supervised
learning. Neural Networks, 7:1441–1460.
Gal, R., Shamir, A., Hassner, T., Pauly, M., and Cohen-
Or, D. (2007). Surface reconstruction using local
shape priors. In Proceedings of the fifth Eurographics
symposium on Geometry processing, SGP ’07, pages
253–262, Aire-la-Ville, Switzerland, Switzerland. Eu-
rographics Association.
Gopi, M. and Krishnan, S. (2002). A fast and effi-
cient projection-based approach for surface recon-
struction. In Proceedings of the 15th Brazilian Sym-
posium on Computer Graphics and Image Processing,
SIBGRAPI ’02, pages 179–186, Washington, DC,
USA. IEEE Computer Society.
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. A., and
Stuetzle, W. (1992). Surface reconstruction from un-
organized points. In Thomas, J. J., editor, SIGGRAPH,
pages 71–78. ACM.
Ivrissimtzis, I., Jeong, W.-K., and Seidel, H.-P. (2003a).
Neural meshes: Statistical learning methods in surface
reconstruction. Technical Report MPI-I-2003-4-007,
Max-Planck-Institut f”ur Informatik, Saarbr
¨
ucken.
Ivrissimtzis, I. P., Jeong, W.-K., and Seidel, H.-P. (2003b).
Using growing cell structures for surface reconstruc-
tion. In SMI ’03: Proceedings of the Shape Modeling
International 2003, page 78, Washington, DC, USA.
IEEE Computer Society.
IJCCI2013-InternationalJointConferenceonComputationalIntelligence
358